高一数学题目,要详细过程,谢谢了
在三角形Abc中角A.B.C所对的边分别为a.b.c且B=派/3,cosC=1/3,b=3倍根号6.(1)求sinC的值(2)求sinC的值(3)求三角形ABC的面积...
在三角形Abc中角A.B.C所对的边分别为a.b.c且B=派/3,cosC=1/3,b=3倍根号6.
(1)求sinC的值
(2)求sinC的值
(3)求三角形ABC的面积 展开
(1)求sinC的值
(2)求sinC的值
(3)求三角形ABC的面积 展开
展开全部
(1)和(2)怎么一样啊 sinC=根号下(1-cosC的平方)=2倍根号2/3
(3)因为B=π/3 所以sinB=根号3/2 由正弦定理 b/sinB=c/sinC 可得c=2
sinA=sin(π-B-C)=(根号3+2倍根号2)/6 面积S=bc*sinA=3倍根号2+4倍根号3
(3)因为B=π/3 所以sinB=根号3/2 由正弦定理 b/sinB=c/sinC 可得c=2
sinA=sin(π-B-C)=(根号3+2倍根号2)/6 面积S=bc*sinA=3倍根号2+4倍根号3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
"且B=派/3"是什么意思?你的题目有问题。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询