1个回答
展开全部
P(2, k/2), △AOP的面积 = (1/2)*OA*P的纵坐标 = (1/2)*2*k/2 = k/2 = 1/2
k = 1
y = 1/x
y1 = 1/x1, y2 = 1/x2
M = 1/(x1)² + 1/(x2)²
N = 1/(x1*x2) + 1/(x1*x2) = 2/(x1*x2)
既然两点不重合, 1/(x1)² + 1/(x2)² > 2/(x1*x2) (利用a, b不等时, a² + b² > 2ab)
M > N
k = 1
y = 1/x
y1 = 1/x1, y2 = 1/x2
M = 1/(x1)² + 1/(x2)²
N = 1/(x1*x2) + 1/(x1*x2) = 2/(x1*x2)
既然两点不重合, 1/(x1)² + 1/(x2)² > 2/(x1*x2) (利用a, b不等时, a² + b² > 2ab)
M > N
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询