异分母分数加减法
10个回答
展开全部
异分母分数加减法,先通分,通分后的异分母分数再按照同分母分数加减法法则进行计算,分母不变,分子进行加减,最后约分。
通分法:
1、求出原来几个分数的分母的最小公倍数;
2、根据分数的基本性质,把原来分数化成以这个最小公倍数为分母的分数。例:计算5/6+7/8?6和8的最小公倍数是24;24相对于6来说扩大了4倍,即5/6=20/24;24相对于8来说扩大了3倍,即7/8=21/24;所以,20/24+21/24=41/24。
通分法:
1、求出原来几个分数的分母的最小公倍数;
2、根据分数的基本性质,把原来分数化成以这个最小公倍数为分母的分数。例:计算5/6+7/8?6和8的最小公倍数是24;24相对于6来说扩大了4倍,即5/6=20/24;24相对于8来说扩大了3倍,即7/8=21/24;所以,20/24+21/24=41/24。
展开全部
“异分母分数加减法”教学预案和教后
教学内容
义务教育课程标准实验教材小学数学五年级(下册)80页例1及相关练习。
教学目标
1、让学生自主探索异分母分数加减法的方法,能正确的计算异分母分数加减法。
2、让学生经历探索异分母分数加减法的计算过程,感受到单位相同的数才能相加的道理,体会到数学的内在联系。
3、在学习的过程中让学生体验到成功的快乐,增强学好数学的信心。
教学过程
一、课前谈话
“脑筋急转弯”的游戏。
1、有一个人,他是你父母生的,但他却不是你的兄弟姐妹,他是谁呀?
2、1+1等于多少?(让学生随意展开想象,说一说)
有学生可能说:1+1等于11或1.1,譬如:1元+1角=11角或1.1元。
师追问:为什么不等于2元或2角?
生:单位不同不能直接相加。
[设计说明:让学生在游戏的过程中体会到相同单位的数才能相加,不同单位的数不能相加的道理,既为新课打下伏笔,也调动了学生的兴趣,拉近了师生的距离。]
2、迅速选择一种方案算出时间
口答: +
3、比较四道算式,引出课题,并板书。
三、探究新知
1、尝试练习 +
①学生尝试练习,教师巡视。
②展示不同的算法,判别正误。
学生可能出现的算法有:① = ② =0.25+0.5=0.75 ③ = ……
根据学生可能出现的几种算法,随机渗透转化的思想、估算的思想。
2、自主探索异分母加法的计算方法。
①直观感知结果是 。
②动手探究为什么得 ,结果是怎么得出的。(动手实践小组合作);
③学生汇报。
④数形结合从分数的意义来理解计算的结果。(课件演示)
⑤探索计算的过程,理解先通分,再计算的道理。(生报,师扳书计算过程,并随机问为什么要把 变成 )
3、练习③、④号方案: + +
4、异分母分数减法的尝试练习。(指名扳书,并验算)
完成书上“试一试”
5、小结异分母分数加减法的计算方法。
[设计意图:从去桃花园的四种不同方案入手,引入课题,既复习了同分母分数加减法的计算方法,也通过对比引发学生思考异分母分数加减法怎样计算。学生通过折纸、画图、数形结合、转化等不同的思维方式,培养了学生解决问题的策略。]
四、巩固练习
1、填一填
2、判断计算是否正确并说明理由
(1) (2) 1 (3)
(4)
3、计算(课堂作业,完成后班长报结果,同桌交换批改)
4、点击生活
欣赏桃花源图片,出示有关信息,让学生提出问题并解答。
[设计意图:练习由浅入深,层次分明,既有强化算法的填空练习和判断练习,又有检测课堂教学效果的课堂作业,也有开放的欣赏练习,通过计算和解决实际问题发展了学生的数感。]
五、全课小结
教后反思
本节课本着“扎实”“有效”的原则,力图使计算教学体现“生活味”的同时,更关注教学的本质来设计教学,教学中,我在以下几方面作了一些尝试。
1、关注新旧知识的联系,促进知识的沟通。异分母分数加减法教学的切入点是“计数单位相同的数,才能直接相加减”这一原理,因此,本节课,我以这个切入点为主线,贯穿教学的始终。课前谈话的“脑筋急转弯”的目的是让学生在游戏中感悟“只有单位相同的两个数才能直接相加减”。导入部分的四种方案所需时间,让学生选择最好算的一种方案,学生自然而然地会选择 + 来计算,这样既复习了同分母分数的计算,也为探究新知埋下了伏笔。然后对比引入新知,学生凭已有的知识、经验很快能明白,异分母分数分母不同,不能直接相加减,从而引发新知冲突,使学生很快进入新知探索状态。学生通过操作,讨论异分母分数相加减的计算方法也就水到渠成了。
2、关注学生的学习方式,促进三维目标的落实。整节课我尽量做到了以学生自主学习为主,学生能回答老师的绝不包办代替。在教学 时,充分让学生自己探索,充分让学生去交流。学生通过折纸、涂色,很好地理解了异分母分数相加减的方法,同时让学生在学习的过程中体会到成功的快乐,“三维目标”也得到了落实。
3、关注学生思维的方向,体现算法的多样化。1+1脑筋急转弯的游戏,对 计算方法上的探讨,学生在计算中对公分母的选择,我能让学生自己去尝试,用自己喜欢的方法去做题,力求学生的算法多样化。
4、关注数学与生活的联系,感受数学的应用价值。本节课从学生非常熟悉的羊寨桃花源入手,引出课题,课尾再次回到桃花源,这样设计,贴近了学生生活,让学生感受到数学与生活的联系,也培养了学生热爱家乡的情感。
以上只是我在执教本节课,想体现的一些想法,但做得还很不够。由于本人才疏学浅,在教学过程中还有不少的问题,还存在着一些困惑。
上完课,自己感受最深的是面对活生生的学生,面对课堂上不同的学生反馈出的各种各样的信息,我深深感到自己驾御课堂的能力有限,缺少必要的教学机智。例如,新知部分学生作品展示,缺少画龙点睛的点拨,感觉到学生说得比较费劲。又如,一位同学在总结计算法则时,学生说了半天,我不知所云,没有及时地去引导她。在教学过程中,对学生的精彩发言评价方法单调,未能激起学生的求知欲望,课堂后半部分课堂气氛显得不够活跃。
其次,执行备课组的教学意图不到位。例如,课堂结尾的欣赏桃花源的练习题,提的问题过大,学生提到了分数除法的问题,由于教学时间不够,未能充分利用这一资源,显得练习深度不够。
第三,对课堂上生成的教学资源,没能很好的利用,感觉对学生关注不够。学生多次出现预案外的生成资源,而我没有充分利用。其实错误是最好的教学资源,应该放手让学生去说,我应该帮助学生分析错误的原因,这样做,可能会达到意想不到的教学效果。
(唐惠玉 阜宁县实验小学)
教学内容
义务教育课程标准实验教材小学数学五年级(下册)80页例1及相关练习。
教学目标
1、让学生自主探索异分母分数加减法的方法,能正确的计算异分母分数加减法。
2、让学生经历探索异分母分数加减法的计算过程,感受到单位相同的数才能相加的道理,体会到数学的内在联系。
3、在学习的过程中让学生体验到成功的快乐,增强学好数学的信心。
教学过程
一、课前谈话
“脑筋急转弯”的游戏。
1、有一个人,他是你父母生的,但他却不是你的兄弟姐妹,他是谁呀?
2、1+1等于多少?(让学生随意展开想象,说一说)
有学生可能说:1+1等于11或1.1,譬如:1元+1角=11角或1.1元。
师追问:为什么不等于2元或2角?
生:单位不同不能直接相加。
[设计说明:让学生在游戏的过程中体会到相同单位的数才能相加,不同单位的数不能相加的道理,既为新课打下伏笔,也调动了学生的兴趣,拉近了师生的距离。]
2、迅速选择一种方案算出时间
口答: +
3、比较四道算式,引出课题,并板书。
三、探究新知
1、尝试练习 +
①学生尝试练习,教师巡视。
②展示不同的算法,判别正误。
学生可能出现的算法有:① = ② =0.25+0.5=0.75 ③ = ……
根据学生可能出现的几种算法,随机渗透转化的思想、估算的思想。
2、自主探索异分母加法的计算方法。
①直观感知结果是 。
②动手探究为什么得 ,结果是怎么得出的。(动手实践小组合作);
③学生汇报。
④数形结合从分数的意义来理解计算的结果。(课件演示)
⑤探索计算的过程,理解先通分,再计算的道理。(生报,师扳书计算过程,并随机问为什么要把 变成 )
3、练习③、④号方案: + +
4、异分母分数减法的尝试练习。(指名扳书,并验算)
完成书上“试一试”
5、小结异分母分数加减法的计算方法。
[设计意图:从去桃花园的四种不同方案入手,引入课题,既复习了同分母分数加减法的计算方法,也通过对比引发学生思考异分母分数加减法怎样计算。学生通过折纸、画图、数形结合、转化等不同的思维方式,培养了学生解决问题的策略。]
四、巩固练习
1、填一填
2、判断计算是否正确并说明理由
(1) (2) 1 (3)
(4)
3、计算(课堂作业,完成后班长报结果,同桌交换批改)
4、点击生活
欣赏桃花源图片,出示有关信息,让学生提出问题并解答。
[设计意图:练习由浅入深,层次分明,既有强化算法的填空练习和判断练习,又有检测课堂教学效果的课堂作业,也有开放的欣赏练习,通过计算和解决实际问题发展了学生的数感。]
五、全课小结
教后反思
本节课本着“扎实”“有效”的原则,力图使计算教学体现“生活味”的同时,更关注教学的本质来设计教学,教学中,我在以下几方面作了一些尝试。
1、关注新旧知识的联系,促进知识的沟通。异分母分数加减法教学的切入点是“计数单位相同的数,才能直接相加减”这一原理,因此,本节课,我以这个切入点为主线,贯穿教学的始终。课前谈话的“脑筋急转弯”的目的是让学生在游戏中感悟“只有单位相同的两个数才能直接相加减”。导入部分的四种方案所需时间,让学生选择最好算的一种方案,学生自然而然地会选择 + 来计算,这样既复习了同分母分数的计算,也为探究新知埋下了伏笔。然后对比引入新知,学生凭已有的知识、经验很快能明白,异分母分数分母不同,不能直接相加减,从而引发新知冲突,使学生很快进入新知探索状态。学生通过操作,讨论异分母分数相加减的计算方法也就水到渠成了。
2、关注学生的学习方式,促进三维目标的落实。整节课我尽量做到了以学生自主学习为主,学生能回答老师的绝不包办代替。在教学 时,充分让学生自己探索,充分让学生去交流。学生通过折纸、涂色,很好地理解了异分母分数相加减的方法,同时让学生在学习的过程中体会到成功的快乐,“三维目标”也得到了落实。
3、关注学生思维的方向,体现算法的多样化。1+1脑筋急转弯的游戏,对 计算方法上的探讨,学生在计算中对公分母的选择,我能让学生自己去尝试,用自己喜欢的方法去做题,力求学生的算法多样化。
4、关注数学与生活的联系,感受数学的应用价值。本节课从学生非常熟悉的羊寨桃花源入手,引出课题,课尾再次回到桃花源,这样设计,贴近了学生生活,让学生感受到数学与生活的联系,也培养了学生热爱家乡的情感。
以上只是我在执教本节课,想体现的一些想法,但做得还很不够。由于本人才疏学浅,在教学过程中还有不少的问题,还存在着一些困惑。
上完课,自己感受最深的是面对活生生的学生,面对课堂上不同的学生反馈出的各种各样的信息,我深深感到自己驾御课堂的能力有限,缺少必要的教学机智。例如,新知部分学生作品展示,缺少画龙点睛的点拨,感觉到学生说得比较费劲。又如,一位同学在总结计算法则时,学生说了半天,我不知所云,没有及时地去引导她。在教学过程中,对学生的精彩发言评价方法单调,未能激起学生的求知欲望,课堂后半部分课堂气氛显得不够活跃。
其次,执行备课组的教学意图不到位。例如,课堂结尾的欣赏桃花源的练习题,提的问题过大,学生提到了分数除法的问题,由于教学时间不够,未能充分利用这一资源,显得练习深度不够。
第三,对课堂上生成的教学资源,没能很好的利用,感觉对学生关注不够。学生多次出现预案外的生成资源,而我没有充分利用。其实错误是最好的教学资源,应该放手让学生去说,我应该帮助学生分析错误的原因,这样做,可能会达到意想不到的教学效果。
(唐惠玉 阜宁县实验小学)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐于2017-09-13
展开全部
由不同分母分数组成的加减法,叫异分母加减法。与同分母分数加减法的计算方法不同。先研究异分母分数加减法的计算
计算同分母分数加减法可以分母不变,只把分子相加减(因为分母相同,也就是分数单位相同,单位相同的数可以直接相加减。)
1、先通分。将异分母分数变成同分母分数。
2、再加减。按同分母分数加减的方法进行加减。(分母不变,分子相加减)
如:7/9-2/3=7/9-6/9=1/9
1/4+3/10=5/20+6/20=11/20
异分母分数加减法怎么速算,直接分母相乘作为分母
b/a+c/d=(bd)/(ad)+(ac)/(ad)=(bd+ac)/(ad)
7/9-2/3=21/27-18/27=3/27=1/9
计算同分母分数加减法可以分母不变,只把分子相加减(因为分母相同,也就是分数单位相同,单位相同的数可以直接相加减。)
1、先通分。将异分母分数变成同分母分数。
2、再加减。按同分母分数加减的方法进行加减。(分母不变,分子相加减)
如:7/9-2/3=7/9-6/9=1/9
1/4+3/10=5/20+6/20=11/20
异分母分数加减法怎么速算,直接分母相乘作为分母
b/a+c/d=(bd)/(ad)+(ac)/(ad)=(bd+ac)/(ad)
7/9-2/3=21/27-18/27=3/27=1/9
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你好!
异分母加减法的验算与整数加减法的验算一样:和减去一个加数等于另一个加数。减数加上差等于被减数。
异分母加减法的验算与整数加减法的验算一样:和减去一个加数等于另一个加数。减数加上差等于被减数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-03-30
展开全部
先将分母通分,然后分子相减就行了
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询