高中数学题,急
f(x)=1/(x+1)In(x+1),求值域不好意思,是f(x)=1/[(x+1)In(x+1)]...
f(x)=1/(x+1)In(x+1),求值域
不好意思,是f(x)=1/[(x+1)In(x+1)] 展开
不好意思,是f(x)=1/[(x+1)In(x+1)] 展开
4个回答
展开全部
解:(1)f(x)=ln(x+1)/(x+1)先求导数,得到它在e-1处取到最大值1/e,在(-1,e-1)上递增,在(e-1,+∞)上递减,lim(x→ -1)f(x)= -∞, lim(x→+∞)f(x)=0,所以值域为(-∞,1/e).(2)f(x)=1/((x+1)ln(x+1)),值域为R\{0}.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
定义域为x>-1且不为0,求导数得f'(x)=-1/ln(x+1)[1/(x+1)^2+2],中括号内恒正,当x为(-1,0)时,导数为正,函数递增,x>0时,导数为负,函数递减。x趋于0或-1时函数趋于无穷大,x趋于正无穷大时,函数趋于0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
定义域x+1>0则x>-1
求导f(x)'=(1-In(x+1))/(x+1)2
f(x)'=0,1-In(x+1)=0得x=e-1
f(x)'>0则-1<x<e-1,f(x)在此区间单调递减;f(x)'<0,则x>e-1,f(x)在此区间单调递增,x=e-1处取最小值f(x)min=1/e,值域(1/e,+∞)
求导f(x)'=(1-In(x+1))/(x+1)2
f(x)'=0,1-In(x+1)=0得x=e-1
f(x)'>0则-1<x<e-1,f(x)在此区间单调递减;f(x)'<0,则x>e-1,f(x)在此区间单调递增,x=e-1处取最小值f(x)min=1/e,值域(1/e,+∞)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
0到正无穷大 都是开区间
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询