请教函数不动点问题
方程f(x)=x的根称为f(x)的不动点,若函数f(x)=x/[a(x+2)]有唯一不动点,且X1=1000,Xn+1=1/f(1/Xn),(n∈N*),则X2005=?...
方程f(x)=x的根称为f(x)的不动点,若函数f(x)=x/[a(x+2)]有唯一不动点,且X1=1000,Xn+1=1/f(1/Xn),(n∈N*),则X2005=?
展开
2个回答
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
f(x1)=x1/a(x1+2)=x1有唯一不动点
所以:a=1/(x1+2)=1/1002
f(xn)=xn/[a(xn+2)]
f(1/xn)=(1/xn)/[a(1/xn+2)]=1/a(1+2xn)
x(n+1)=1/f(1/xn)=a(1+2xn)=(1+2xn)/1002
1002x(n+1)=2xn+1
设:1002[x(n+1)+k]=2[xn+k]
k=-1/1000
x(n+1)-1/1000=2[xn-1/1000]/1002
所以xn-1/1000是首项为1000-1/1000,公比为2/1002的等比数列
x2005-1/1000=(1000-1/1000)*(2/1002)^2004
x2005=1/1000+999/1000/551^2004
所以:a=1/(x1+2)=1/1002
f(xn)=xn/[a(xn+2)]
f(1/xn)=(1/xn)/[a(1/xn+2)]=1/a(1+2xn)
x(n+1)=1/f(1/xn)=a(1+2xn)=(1+2xn)/1002
1002x(n+1)=2xn+1
设:1002[x(n+1)+k]=2[xn+k]
k=-1/1000
x(n+1)-1/1000=2[xn-1/1000]/1002
所以xn-1/1000是首项为1000-1/1000,公比为2/1002的等比数列
x2005-1/1000=(1000-1/1000)*(2/1002)^2004
x2005=1/1000+999/1000/551^2004
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询