
3个回答
展开全部
设OB=r₁;AB=r₂;那么 由余弦定理得:r₂²=OA²+r₁²-2∣OA∣r₁cosθ;(0≦θ≦π)
即cosθ=(OA²+r₁²-r₂²)/(2r₁∣OA∣);(设r₁≦r₂);
当θ=0时∣OA∣=r₁+r₂,此时 :
cosθ=[(r₁+r₂)²+r₁²-r₂²]/[2(r₁+r₂)]=(2r₁²+2r₁r₂)/[2r₁(r₁+r₂)]=1;
当θ=π时∣OA∣=r₂-r₁;此时:
cosθ=[(r₂-r₁)²+r₁²-r₂²]/[2r₁(r₂-r₁)]=(2r₁²-2r₁r₂)/[2r₁(r₂-r₁)]=2r₁(r₁-r₂)/[2r₁(r₂-r₁)]=-1;
即cosθ=(OA²+r₁²-r₂²)/(2r₁∣OA∣);(设r₁≦r₂);
当θ=0时∣OA∣=r₁+r₂,此时 :
cosθ=[(r₁+r₂)²+r₁²-r₂²]/[2(r₁+r₂)]=(2r₁²+2r₁r₂)/[2r₁(r₁+r₂)]=1;
当θ=π时∣OA∣=r₂-r₁;此时:
cosθ=[(r₂-r₁)²+r₁²-r₂²]/[2r₁(r₂-r₁)]=(2r₁²-2r₁r₂)/[2r₁(r₂-r₁)]=2r₁(r₁-r₂)/[2r₁(r₂-r₁)]=-1;
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询