∫dx/√(x^2+1)^5 求不定积分的详细过程 谢谢
展开全部
令x=tanθ
x^2+1 = (tanθ)^2+1 = (secθ)^2
√(x^2+1)^5 = (secθ)^5
dx = d(tanθ) = (secθ)^2dθ
∫dx/√(x^2+1)^5 = ∫(secθ)^2dθ/(secθ)^5 = ∫dθ/(secθ)^3 = ∫(cosθ)^3dθ
∫(cosθ)^3dθ = ∫[1-(sinθ)^2]cosθdθ = ∫[1-(sinθ)^2]dsinθ = sinθ - (sinθ)^3/3 + C
由x=tanθ,知sinθ = x/√(x^2+1)
∫dx/√(x^2+1)^5 = x/√(x^2+1) + x^3/[3(x^2+1)^3/2] + C
x^2+1 = (tanθ)^2+1 = (secθ)^2
√(x^2+1)^5 = (secθ)^5
dx = d(tanθ) = (secθ)^2dθ
∫dx/√(x^2+1)^5 = ∫(secθ)^2dθ/(secθ)^5 = ∫dθ/(secθ)^3 = ∫(cosθ)^3dθ
∫(cosθ)^3dθ = ∫[1-(sinθ)^2]cosθdθ = ∫[1-(sinθ)^2]dsinθ = sinθ - (sinθ)^3/3 + C
由x=tanθ,知sinθ = x/√(x^2+1)
∫dx/√(x^2+1)^5 = x/√(x^2+1) + x^3/[3(x^2+1)^3/2] + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
令x=tant
1+x²=1+tan²t=sec²t
dx=sec²t·dt
∫√(x²+1)⁻⁵dx=∫sec⁻⁵t·sec²t·dt=∫sec⁻³t·dt=∫cos³tdt
∫cos³tdt
=∫(1-sin²t)·cost·dt
=∫(1-sin²t)·dsint
=sint-⅓sin³t+C
原式=sin(arctanx)-⅓sin³(arctanx)+C
=x/√(1+x²)-⅓[x/√(1+x²)]³+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询