已知a>0,函数f(x)=1/3a^2x^3-ax^2+2/3,g(x)=-ax+1,x属于R
问:若在区间(0,1/2]上至少存在一个实数x,使f(x)>g(x)成立,求正实数a的取值范围...
问:若在区间(0,1/2]上至少存在一个实数x,使f(x)>g(x)成立,求正实数a的取值范围
展开
2个回答
展开全部
f(x)-g(x)=1/3a^2x^3-ax^2+2/3+ax-1
= 1/3a^2x^3-ax^2+ax-1/3 >0
要使在区间(0,1/2]上至少存在一个实数x,使f(x)>g(x)成立既要在区间(0,1/2]上至少存在一个实数x使上式成立。显然a不为0,而上式又等价于a^2x^3-3ax^2+ax-1>0
令f(x)=a^2x^3-3ax^2+ax-1>0
再求导,然后解方程求出根,再画出大概图像,再去分析就很好理解了,答案是a<-3-根号17 或 a>-3+根号17
= 1/3a^2x^3-ax^2+ax-1/3 >0
要使在区间(0,1/2]上至少存在一个实数x,使f(x)>g(x)成立既要在区间(0,1/2]上至少存在一个实数x使上式成立。显然a不为0,而上式又等价于a^2x^3-3ax^2+ax-1>0
令f(x)=a^2x^3-3ax^2+ax-1>0
再求导,然后解方程求出根,再画出大概图像,再去分析就很好理解了,答案是a<-3-根号17 或 a>-3+根号17
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询