第18届“希望杯”全国数学邀请赛初一 第2试答案分析

要分析!!!不是答案... 要分析!!!不是答案 展开
zjyyyyf
2011-04-01
知道答主
回答量:35
采纳率:0%
帮助的人:17.4万
展开全部
答案:
一、 选择题(每小题4分。)
题号 1 2 3 4 5 6 7 8 9 10
答案 B D A C C C D C B D
二、 填空题(每小题4分;两个空的小题,每个空2分。)
题号 11 12 13 14 15 16 17 18 19 20
答案


2557
18 67;9;80;9
98 ;1.22

2

三.解答题
21.假设这2007个点都不在直线L上,由于其中每个点 (i=1,2,……,2007)关于直线L的对称点 仍在这2007个点中,所以 不在直线L上。
也就是说,不在直线L上点 (i=1,2,……,2007)与 关于直线L对称的点 成对出现,即平面上标出的点的总数应是偶数个,与点的总数2007相矛盾!
因此,“这2007个点都不在直线L上”的假设不能成立,即这2007个点中至少有1个点在直线L上。
22.设哥哥的速度是 米/秒,小明的速度是 米/秒。环形跑道长s米。
(1)由“经过25分钟哥哥追上小明,并且比小明多跑了20圈”,知
经过 分钟哥哥追上小明,并且比小明多跑了1圈。所以

整理,得,
所以, .
(2)根据题意,得
即 解得,
故经过了25分钟小明跑了

(2)另解 由 ,知小明每跑1圈,哥哥就比小明多跑1圈,所以当哥哥比小明多跑20圈时,小明也跑了20圈。
23.由条件1+3n≤2007得
n≤668,n是正整数。
设1+5n= (m是正整数),则
,这是正整数。
故可设m+1=5k,或m-1=5k(k是正整数)
○1当m+1=5k是, ,由
,得,k≤11
当k=12时, >668。
所以,此时有11个满足题意的正整数n使1+5n是完全平方数;
○2当m-1=5k时, ,
又 < ,且当k=11时 <668,
所以,此时有11个满足题意的正整数n使1+5n是完全平方数。
因此,满足1+3n≤2007且使1+5n使完全平方数的正整数n共有22个。
mickmort1996
2011-03-31 · TA获得超过981个赞
知道小有建树答主
回答量:632
采纳率:0%
帮助的人:611万
展开全部
没有题目啊,你可以问具体的一道题,我能帮你分析。全部分析太困难了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
835521783zh
2011-04-01 · 超过10用户采纳过TA的回答
知道答主
回答量:427
采纳率:0%
帮助的人:95.8万
展开全部
12132
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式