【有图】高数求积分

尤其是加号后面的积分怎么算的?给个思路也可以啦... 尤其是加号后面的积分怎么算的?给个思路也可以啦 展开
xikaka525
2011-04-01 · TA获得超过1636个赞
知道大有可为答主
回答量:1763
采纳率:0%
帮助的人:1493万
展开全部
1/1+t^2 求导变成arctant

所以等式=arctant|上面是X 下面是0 +arctant|上面是1/x 下面是0
=arctanx+arctan1/x

解释一下上面的等式。把X带入arctant中。然后把0带入arctant中。用arctanx-arctan0
tan0=0 所以 arctan0=0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
sxjice545
2011-04-01 · TA获得超过9154个赞
知道大有可为答主
回答量:5366
采纳率:0%
帮助的人:3942万
展开全部

看图

更多追问追答
追问
可是标准答案是π/2,你给的图上是不是漏了1/x的求导了。
追答
是π/2,我打错了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
522597089
2011-04-01 · TA获得超过6787个赞
知道大有可为答主
回答量:1170
采纳率:75%
帮助的人:808万
展开全部
变限积分求导
因为F'(x)=1/(1+x²)+[1/(1+1/x²)](-1/x²)=1/(1+x²)-1/(1+x²)=0
因此F(x)=C
又F(1)=2∫(0,1)1/(1+t²)dt=2arctant|(0,1)=π/2
所以F(x)=π/2
追问
能讲一下这个思路怎么出来的吗?我做这个题目应该是一辈子都不会有想到把F'(x)先求导一下的。。。
另外F(1)你是怎么想到的,还有其他的数字能带入吗?
另外如果单求第二个积分的话,能积吗?
追答
其实一楼的思路方法也是对的。
第二个积分是可积分的,它的积分结果为∫(0,1/x)1/(1+t²)dt=arctant|(0,1/x)=arctan(1/x)
若先积分后求导你也会容易理解的
积分容易得到
F(x)=arctanx+arctan(1/x)
求导仍有
F'(x)=1/(1+x²)+)+[1/(1+1/x²)](-1/x²)=1/(1+x²)-1/(1+x²)=0
这就说明F(x)为常函数。
这里也可以不取x=1来求F(x)的值
如取x趋于0有
F(x)=lim(x->0)F(x)=lim(x->0)arctanx+lim(x->0)arctan(1/x)=0+π/2=π/2.【F(x)在x=0处连续】
或取x=√3,仍有F(x)=arctan√3+arctan(1/√3)=π/3+π/6=π/2
我选x=1只是为了方便计算,
其实令arctanx=α,arctan(1/x)=β,α,β∈(0,π/2)
则x=tanα,1/x=tanβ=1/tanα=cotα=tan(π/2-α)
那么arctanx+arctan(1/x)=α+β=π/2,现在明白了吧?
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式