求解题!!
展开全部
这题简单
画出f(t)=sint的曲线就知道了
1.f(t)在[-π/2+2kπ,π/2+2kπ]区间上单调递增,则-π/2+2kπ≤π/6-2x≤π/2+2kπ
f(t)在[π/2+2kπ,3π/2+2kπ]区间上单调递减,则π/2+2kπ≤π/6-2x≤3π/2+2kπ
2.f(t)的对称轴是t=π/2+kπ,则π/6-2x=π/2+kπ
f(t)的对称中心是t=kπ,则π/6-2x=kπ
3.当t=π/2+2kπ时,f(t)max=1,则π/6-2x=π/2+2kπ,f(x)max=4
当t=-π/2+2kπ时,f(t)min=-1,则π/6-2x=-π/2+2kπ,f(x)min=-4
以上k均为整数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询