1个回答
展开全部
周线就是复平面内的闭曲线,复变函数的积分类似于高等数学中对坐标的曲线积分,最一般的方法是对于复变函数f(z)=u+iv,其中u=u(x,y),v=v(x,y),z=x+iy,则复变函数积分 ∫f(z)dz=∫(u+iv)(dx+idy)=∫(udx-vdy)+i∫(vdx+udy),从而转化为两个对坐标的曲线积分。该方法虽然是通用的,对被积函数和积分曲线都没有要求,但是一般很麻烦,不常用。复变函数中最重要的一类是所谓的解析函数,而且通常对闭曲线进行积分,如果函数f(z)在积分闭曲线内解析,则根据柯西古萨基本定理,此积分等于0,即解析函数沿闭曲线的积分等于0。如果函数在积分闭曲线内有唯一奇点z0,则可用柯西积分公式∮f(z)dz/(z-z0)=2πif(z0)计算。对于被积函数不是f(z)dz/(z-z0)形式或积分闭曲线内有多个奇点的情况,有时可以通过变形转为为柯西积分公式适用的形式,更一般地可以用留数定理计算。
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
用留数定理做。 曲线C:(x-2)^2+y^2 = 4 以(2,0)为中心,半径为2的圆周 由柯西积分定理,如果在闭合的积分曲线内没有孤立极点,则积分值为零。 下面就需要在C内寻找被积函数的极点(使分母为零),分别是 z = 2, z = ...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |