∫x²/(ax+b) dx,求不定积分
展开全部
求法之一如下:
解:若a=0,则
ʃx²/(ax+b)dx=ʃ(x²/b)dx=x³/(3b)+C;
若a≠0,则
ʃx²/(ax+b)dx
=(1/a)ʃ[x²/(x+b/a)]dx
=(1/a)ʃ[(x²+bx/a-bx/a-b²/a²+b²/a²)
/(x+b/a)]dx
=(1/a)ʃ[x-b/a+(b²/a²)/(x+b/a)]dx
=(1/a²)ʃ(ax-b)dx+(b²/a³)ʃ[a/(ax+b)]dx
=x²/(2a)-bx/a²+(b²/a³)ln|ax+b|+C.
解:若a=0,则
ʃx²/(ax+b)dx=ʃ(x²/b)dx=x³/(3b)+C;
若a≠0,则
ʃx²/(ax+b)dx
=(1/a)ʃ[x²/(x+b/a)]dx
=(1/a)ʃ[(x²+bx/a-bx/a-b²/a²+b²/a²)
/(x+b/a)]dx
=(1/a)ʃ[x-b/a+(b²/a²)/(x+b/a)]dx
=(1/a²)ʃ(ax-b)dx+(b²/a³)ʃ[a/(ax+b)]dx
=x²/(2a)-bx/a²+(b²/a³)ln|ax+b|+C.
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x^2
=(1/a)x(ax+b) - (b/a)x
=(1/a)x(ax+b) - (b/a^2)(ax+b) + b/a^2
∫x^2/(ax+b) dx
=∫[ (1/a)x - (b/a^2) + (b/a^2) (1/(ax+b) ) ]dx
=[1/(2a)]x^2 - (b/a^2)x + (b/a^3)ln|ax+b| + C
=(1/a)x(ax+b) - (b/a)x
=(1/a)x(ax+b) - (b/a^2)(ax+b) + b/a^2
∫x^2/(ax+b) dx
=∫[ (1/a)x - (b/a^2) + (b/a^2) (1/(ax+b) ) ]dx
=[1/(2a)]x^2 - (b/a^2)x + (b/a^3)ln|ax+b| + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |