
高二数学求高手
在△ABC中,abc分别是内角ABC的对边,求证:1/2(1/a+1/b+1/c)≤cosA/a+cosB/b+cosC/c<1/a+1/b+1/c...
在△ABC中,a b c分别是内角A B C的对边,求证:1/2(1/a+1/b+1/c)≤cosA/a+cosB/b+cosC/c <1/a+1/b+1/c
展开
1个回答
展开全部
(1)、x*x + y*y ≥ 2xy
(2)、三角形余弦定理:a^2 = b^2 + c^2 -2bc*cosA
等价于证明:
bc + ca + ab ≤ 2bc*cosA + 2ca*cosB + 2ab*cosC
<==>
bc + ca + ab ≤ a*a + b*b + c*c
由(1)可知,这个不等式成立,证毕
(2)、三角形余弦定理:a^2 = b^2 + c^2 -2bc*cosA
等价于证明:
bc + ca + ab ≤ 2bc*cosA + 2ca*cosB + 2ab*cosC
<==>
bc + ca + ab ≤ a*a + b*b + c*c
由(1)可知,这个不等式成立,证毕
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询