初三一元二次方程
已知函数y=-ax2+bx+c(a≠0)图象过点P(-1,2)和Q(2,4).(1)证明:无论a为任何实数时,抛物线的图象与X轴的交点在原点两侧;若它的图象与X轴有两个交...
已知函数y=-ax2+bx+c(a≠0)图象过点P(-1,2)和Q(2,4).
(1)证明:无论a为任何实数时,抛物线的图象与X轴的交点在原点两侧;若它的图象与X轴有两个交点A、B(A在B左)与y轴交于点C,且 ,求抛物线解析式;
(2)点M在(1)中所求的函数图象上移动,是否存在点M,使A M⊥BM?若存在,求出点M的坐标,若不存在,试 说明理由。
怎么证都证不出来,除非两个点的纵坐标为2和-4,或-2和4. 展开
(1)证明:无论a为任何实数时,抛物线的图象与X轴的交点在原点两侧;若它的图象与X轴有两个交点A、B(A在B左)与y轴交于点C,且 ,求抛物线解析式;
(2)点M在(1)中所求的函数图象上移动,是否存在点M,使A M⊥BM?若存在,求出点M的坐标,若不存在,试 说明理由。
怎么证都证不出来,除非两个点的纵坐标为2和-4,或-2和4. 展开
展开全部
y=-ax^2+bx+c
-a-b+c=2
-4a+2b+c=4
b=a+2/3
c=2a+8/3
y=-ax^2+bx+c
=-ax^2+(a+2/3)x+2a+8/3
-ax^2+(a+2/3)x+2a+8/3=0
△=(a+2/3)^2-4(-a)(2a+8/3)
=9a^2+12a+4/9≥0
a≥-2/3+4√2/9或a≤-2/3-4√2/9
x1x2=(2a+8/3)/(-a)=-2-8/(3a)
当a≥-2/3+4√2/9时
-2-8/(3a)≥-2-8/(-2+4√2/3)=34+24√2>0
当a≤-2/3-4√2/9时
-2-8/(3a)≤-2-8/(-2-4√2/3)=34-24√2>0
x1、x2同号,
抛物线的图象与X轴的交点在原点同侧。
-a-b+c=2
-4a+2b+c=4
b=a+2/3
c=2a+8/3
y=-ax^2+bx+c
=-ax^2+(a+2/3)x+2a+8/3
-ax^2+(a+2/3)x+2a+8/3=0
△=(a+2/3)^2-4(-a)(2a+8/3)
=9a^2+12a+4/9≥0
a≥-2/3+4√2/9或a≤-2/3-4√2/9
x1x2=(2a+8/3)/(-a)=-2-8/(3a)
当a≥-2/3+4√2/9时
-2-8/(3a)≥-2-8/(-2+4√2/3)=34+24√2>0
当a≤-2/3-4√2/9时
-2-8/(3a)≤-2-8/(-2-4√2/3)=34-24√2>0
x1、x2同号,
抛物线的图象与X轴的交点在原点同侧。
追问
题目问的是任意a,只要不为0,都可使得函数与y轴的交点分布于x轴的异侧。
追答
对啊,就是这样做的啊。
参考资料: http://zhidao.baidu.com/question/214315060.html
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |