∫√(1+x)/1+√(1+x)dx
2个回答
展开全部
∫√(1+x2) dx=√(1+x2) *x-∫x*d√(1+x2) =√(1+x2) *x-∫x*x/√(1+x2)dx=√(1+x2) *x-∫(x2+1-1)/√(1+x2)dx=√(1+x2) *x-∫[√(x2+1)-1/√源消(1+x2)]dx=√(1+x2) *x-∫√(x2+1)dx+∫1/√(1+x2)dx 移相 所以2*∫√(1+x2) dx=√(1+x2) *x+∫1/√(1+x2)dx=√(1+x2) *x+ln[x+√(1+x2)]+常数C 所以∫√哪裂余(1+x2) dx=1//李滚2*{√(1+x2) *x+ln[x+√(1+x2)]}+常数C ∫1/√(1+x2)dx=ln[x+√(1+x2)]+常数C 这一步高数书上应该有的,你查查
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询