很急很急的一道数学题,麻烦你们帮帮忙吧

如图,P是射线y=3/5*x(x〉0)上的一动点,以P为圆心的圆与Y轴相切于C点,与x轴的正半轴交于A,B两点<br/>(1)若圆P的半径为5,则P点坐标是();A点坐标... 如图,P是射线y=3/5*x(x〉0)上的一动点,以P为圆心的圆与Y轴相切于C点,与x轴的正半轴交于A,B两点<br />
(1)若圆P的半径为5,则P点坐标是( );A点坐标是( );以P为顶点,且经过A点的抛物线的解析式是( ) <br />
(2)在(1)的条件下,上述抛物线是否经过点C关于原点的对称点D,请说明理由<br />
(3)试问:是否存在这样的直线l,当P在运动过程中,经过A,B,C三点的抛物线的顶点都在直线l上?若存在,请求出直线l的解析式,若不存在,请说明理由
展开
封腾CC
2011-04-02 · TA获得超过119个赞
知道答主
回答量:55
采纳率:0%
帮助的人:61.8万
展开全部
①P点坐标是(5,3) A点坐标是(1,0)
抛物线解析式为:y=(-3/16)(x-5)^2+3
解析:圆有这么一个定理:连接切点的半径必垂直于切线,所以轻易得出点P的横坐标为5,代入y=(3/5)x中解得纵坐标为3,连接AP,并过P点作AB的垂线交AB于E,构成直角三角形的斜边AP为半径5,直角边PE为P点纵坐标3,解得AE为4,又因为OE的长度为5,可得出A点坐标为(1,0)
因为抛物线的对称轴为x=5,可以假设抛物线方程为y=a(x-5)^2+b,将点P、A的坐标分别代入解得a=-3/16 b=3
②不经过D点
解析:首先得出C点坐标(0,3),则关于原点对称的点D坐标为(0,-3),将x=0代入抛物线方程,解出y=-27/16≠-3,所以D点不在抛物线上
③存在
题①中的抛物线就是经过A、B、C三点并且顶点在直线y=(3/5)x上的,其实所要求的直线I就是y=(3/5)x(x>0)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式