初二数学 如图,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF

若BE=12,CF=5,求三角形DEF面积... 若BE=12,CF=5,求三角形DEF面积 展开
tyrhhbd
2011-04-02 · TA获得超过2.4万个赞
知道大有可为答主
回答量:3261
采纳率:0%
帮助的人:1583万
展开全部
连接AD,由于△ABC是等腰直角三角形,于是有:
AD⊥BC,AD=BD=CD,∠B=∠C=∠BAD=∠CAD,∠ADC=∠ADF+∠FDC=90°

又DE⊥DF,即∠EDF=∠EDA+∠ADF=90°,所以:∠EDA=∠FDC

那么△AED与△CFD满足∠EDA=∠FDC、∠EAD=∠BAD=∠C=∠FCD、AD=CD
所以:△AED≌△CFD,有
AE=CF=5,AB=AE+BE=5+12=17=AC,AF=AC-CF=17-5=12,DE=DF

根据勾股定理可知:EF²=AE²+AF²=5²+12²=13²,EF=13
△DEF构成一个等腰直角三角形,底边是EF=13,面积是:
S=EF×(EF/2)/2=13²/4=169/4=42.25

-----------------------------------------------------------------------------------------
也可以不用勾股定理算EF,而是算其他几个三角形的面积再相减
作DM⊥AB,那么DM//AC,△BMD∽△BAC,DM:AC=BD:BC=1:2,DM=AC/2=17/2
作DN⊥AC,那么DN//AB,△CND∽△CAB,DN:AB=CD:BC=1:2,DN=AB/2=17/2

于是有:
△ABC的面积 S0=AB×AC/2=17×17/2=289/2
△AEF的面积 S1=AE×AF/2=5×12/2=30
△BED的面积 S2=BE×DM/2=12×(17/2)/2=51
△CFD的面积 S3=CF×DN/2=5×(17/2)/2=85/4

所以△DEF的面积是:
S=S0-S1-S2-S3=289/2-30-51-85/4=169/4=42.25

---------------------------------------------------------------------------------------
对初二学生而言,本题只能用初二的平面几何方法来做;如果学了余弦定理,也可以用余弦定理进行计算。
平面几何解法也不止一种,只要灵活运用平面几何的定理、性质、全等图形、相似图形等,可以找到多种解题的巧妙方法。
匿名用户
2011-04-13
展开全部
连接AD,由于△ABC是等腰直角三角形,于是有:
AD⊥BC,AD=BD=CD,∠B=∠C=∠BAD=∠CAD,∠ADC=∠ADF+∠FDC=90°

又DE⊥DF,即∠EDF=∠EDA+∠ADF=90°,所以:∠EDA=∠FDC

那么△AED与△CFD满足∠EDA=∠FDC、∠EAD=∠BAD=∠C=∠FCD、AD=CD
所以:△AED≌△CFD,有
AE=CF=5,AB=AE+BE=5+12=17=AC,AF=AC-CF=17-5=12,DE=DF

根据勾股定理可知:EF²=AE²+AF²=5²+12²=13²,EF=13
△DEF构成一个等腰直角三角形,底边是EF=13,面积是:
S=EF×(EF/2)/2=13²/4=169/4=42.25
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
蝼蚁计谋c
2011-04-02
知道答主
回答量:11
采纳率:0%
帮助的人:3.6万
展开全部
连接AD,由于△ABC是等腰直角三角形,于是有:
AD⊥BC,AD=BD=CD,∠B=∠C=∠BAD=∠CAD,∠ADC=∠ADF+∠FDC=90°

又DE⊥DF,即∠EDF=∠EDA+∠ADF=90°,所以:∠EDA=∠FDC

那么△AED与△CFD满足∠EDA=∠FDC、∠EAD=∠BAD=∠C=∠FCD、AD=CD
所以:△AED≌△CFD,有
AE=CF=5,AB=AE+BE=5+12=17=AC,AF=AC-CF=17-5=12,DE=DF

根据勾股定理可知:EF²=AE²+AF²=5²+12²=13²,EF=13
△DEF构成一个等腰直角三角形,底边是EF=13,面积是:
S=EF×(EF/2)/2=13²/4=169/4=42.25
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Nanshanju
2011-04-01 · TA获得超过3.2万个赞
知道大有可为答主
回答量:5769
采纳率:78%
帮助的人:3104万
展开全部
延长FD至G,使DG=DF,连结BG、AD、EG,则:
∴△CDF≌△BDG
∴∠DBG=∠C=45°,BG=CF=5
∴EG=√(BG^2+BE^2)=13
∵DE⊥DF,DE=DF
∴EG=EF
∵∠ADE+∠工DF=90°=∠ADF+∠CDF
∴∠ADE=∠CDF
∵AD=CD,∠DAE=∠C=45°
∴△ADE≌△CDF
∴DE=DF
∴∠DFE=45°
∴EG=EF
∴∠DGE=45°
∴△EFG是等腰直角三角形
∴S△DEF=1/2S△EFG=1/2×1/2EG·EF=169/4
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式