大学求极限lim简单例题

 我来答
帐号已注销
2020-11-14 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:166万
展开全部

第一个极限是零,第3个用裂项法

^(1) lim(x→1)(x^2-2x+1)/(x^du2-1)=lim(x→1)(x-1)^2/[(x-1)(x+1)]=lim(x→1)(x-1)/(x+1)=0

(2) lim(x→4)(x^2-6x+8)/(x^2-5x+4)=lim(x→4)(x-2)(x-4)/[(x-1)(x-4)]lim(x→4)(x-2)/(x-1)=2/3

(3) 原式=lim(x→2)(x+2)/[(x-2)(x+2)]=∞

(4) 原式=lim(n→∞)1/2[1-1/3+1/3-1/5+……+1/(2n-1)-1/(2n+1)]=lim(n→∞)1/2[1-1/(2n+1)]=1/2

(5) 原式=lim(x→0)x^2[1+√(1+x^2)]/(-x^2)=lim(x→0)[1+√(1+x^2)]=2

(6) 原式=lim(n→∞)3/[√(x^2+1)+√(x^2-2)]=0

(7) ∵lim(x→0)x^2=0 |sin(1/x)|<=1 ∴lim(x→0)x^2|sin(1/x)=0

(8) ∵lim(x→∞)1/x=0 |arctan x|<π/2 ∴lim(x→∞)arctan x/x=0

扩展资料:

与常数a的接近程度。ε越小,表示接近得越近;而正数ε可以任意地变小,说明xn与常数a可以接近到任何不断地靠近的程度。但是,尽管ε有其任意性,但一经给出,就被暂时地确定下来,以便靠它用函数规律来求出N;

又因为ε是任意小的正数,所以ε/2 、3ε 、ε等也都在任意小的正数范围,因此可用它们的数值近似代替ε。同时,正由于ε是任意小的正数,我们可以限定ε小于一个某一个确定的正数。

参考资料来源:百度百科-lim

大卡玩AI
高粉答主

2020-07-22 · 繁杂信息太多,你要学会辨别
知道答主
回答量:17.4万
采纳率:5%
帮助的人:8591万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
crs0723
2020-03-25 · TA获得超过2.5万个赞
知道大有可为答主
回答量:1.6万
采纳率:85%
帮助的人:4577万
展开全部
lim(x->0) [(x+3)/(x-1)]^(2x+3)
=[3/(-1)]^3
=-27
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式