大学求极限lim简单例题
第一个极限是零,第3个用裂项法。
^(1) lim(x→1)(x^2-2x+1)/(x^du2-1)=lim(x→1)(x-1)^2/[(x-1)(x+1)]=lim(x→1)(x-1)/(x+1)=0
(2) lim(x→4)(x^2-6x+8)/(x^2-5x+4)=lim(x→4)(x-2)(x-4)/[(x-1)(x-4)]lim(x→4)(x-2)/(x-1)=2/3
(3) 原式=lim(x→2)(x+2)/[(x-2)(x+2)]=∞
(4) 原式=lim(n→∞)1/2[1-1/3+1/3-1/5+……+1/(2n-1)-1/(2n+1)]=lim(n→∞)1/2[1-1/(2n+1)]=1/2
(5) 原式=lim(x→0)x^2[1+√(1+x^2)]/(-x^2)=lim(x→0)[1+√(1+x^2)]=2
(6) 原式=lim(n→∞)3/[√(x^2+1)+√(x^2-2)]=0
(7) ∵lim(x→0)x^2=0 |sin(1/x)|<=1 ∴lim(x→0)x^2|sin(1/x)=0
(8) ∵lim(x→∞)1/x=0 |arctan x|<π/2 ∴lim(x→∞)arctan x/x=0
扩展资料:
与常数a的接近程度。ε越小,表示接近得越近;而正数ε可以任意地变小,说明xn与常数a可以接近到任何不断地靠近的程度。但是,尽管ε有其任意性,但一经给出,就被暂时地确定下来,以便靠它用函数规律来求出N;
又因为ε是任意小的正数,所以ε/2 、3ε 、ε等也都在任意小的正数范围,因此可用它们的数值近似代替ε。同时,正由于ε是任意小的正数,我们可以限定ε小于一个某一个确定的正数。
参考资料来源:百度百科-lim