展开全部
所谓的“像”就是函数值或者值域 w=u+iv=z^2+iz=(x^2-y^2)+2xyi+i(x+iy)=(x^2-y^2-y)+i(2xy+x) u=x^2-y^2-y,v=2xy+x (1)对于z=2-i,有w=4-2i (2)对于曲线z=t^2+2it(其中t是实数),有x=Re(z)=y^2/4=Im(z)^2/4 所以w=(y^4/16-y^2-y)+i(y^3/2+y^2/4) 那么u=y^4/16-y^2-y,v=y^3/2+y^2/4 所以曲线在W的像为{(u,v)|u=y^4/16-y^2-y,v=y^3/2+y^2/4,y∈R} [注:其实把u写成v的函数或者倒过来,在这个题是不可行的,因为u和v都是关于y的高次函数(方程),而且函数不是单调的,所以用u或者v来表示y都是不可行的] (3)闭区域D={x+yi|0≤y≤sqrt(1-x^2),x∈R}={re^it|0≤r≤1,0≤t≤π} 所以其在W中的像为 {x+yi|x=r^2*cos2t-rsint,y=r^2*sin2t+rcost,0≤r≤1,0≤t≤π} 目测也不能再化简了
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询