泰4.求一道高数题?
2个回答
展开全部
对∀x∈[0,1],作二阶泰勒展开
f(0)=f(x)+f'(x)*(0-x)+f''(a)/2*(0-x)^2,其中a∈(0,x)
f(1)=f(x)+f'(x)*(1-x)+f''(b)/2*(1-x)^2,其中b∈(x,1)
两式相减,因为f(0)=f(1),所以
0=f(1)-f(0)=f'(x)+f''(b)/2*(1-x)^2-f''(a)/2*x^2
f'(x)=f''(a)/2*x^2-f''(b)/2*(1-x)^2
|f'(x)|<=|f''(a)|/2*x^2+|f''(b)|/2*(1-x)^2
<=(1/2)*x^2+(1/2)*(1-x)^2
=(1/2)*(2x^2-2x+1)
=x^2-x+1/2
=(x-1/2)^2+1/4
<=1/2
f(0)=f(x)+f'(x)*(0-x)+f''(a)/2*(0-x)^2,其中a∈(0,x)
f(1)=f(x)+f'(x)*(1-x)+f''(b)/2*(1-x)^2,其中b∈(x,1)
两式相减,因为f(0)=f(1),所以
0=f(1)-f(0)=f'(x)+f''(b)/2*(1-x)^2-f''(a)/2*x^2
f'(x)=f''(a)/2*x^2-f''(b)/2*(1-x)^2
|f'(x)|<=|f''(a)|/2*x^2+|f''(b)|/2*(1-x)^2
<=(1/2)*x^2+(1/2)*(1-x)^2
=(1/2)*(2x^2-2x+1)
=x^2-x+1/2
=(x-1/2)^2+1/4
<=1/2
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询