初等数论中的同余,欧拉定理与费马小定理

证明:对于任意整数a,(a,561)=1,都有a560≡1(mod561),但561是合数。... 证明:对于任意整数a,(a,561)=1,都有a560≡1(mod561),但561是合数。 展开
xiaoyuemt
2011-04-02 · TA获得超过1.6万个赞
知道大有可为答主
回答量:3202
采纳率:64%
帮助的人:1645万
展开全部
561=3*11*17
3,11,17都是质数
且,因为 (a,561)=1,所以 (a,3)=1,(a,11)=1,(a,17)=1
根据费马小定理有:
a^2≡1 这样 (a^2)^280≡1,即 a^560≡1 (mod 3)
a^10≡1 这样 (a^2)^56≡1,即 a^560≡1 (mod 11)
a^16≡1 这样 (a^2)^35≡1,即 a^560≡1 (mod 17)
而 3,11,17都是质数,所以
a^560≡1 (mod 3*11*17)
即 a^560≡1 (mod 561)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式