三角形ABC中,内角A.B.C的对边分别为a.b.c,已知a.b.c成等比数列,且cosB=3/4``````求答案啊````
展开全部
法一
已知a.b.c成等比数列
所以a*c=b^2
正弦定理,a/sinA=b/sinB=c/sinC
sinA=a/b*sinB,sinC=c/b*sinC
又因为cosB=3/4sin^2B+cos^2B=1
sinB=7^(1/2)/4
然后再算,如果是
(1)求cotA+cotC的值;
(2)设向量BA点乘向量BC=3/2,求a+c的值.推荐看
http://zhidao.baidu.com/question/34008870.html
法二
a,b,c成等比数列,则可表示为a,ar,ar^2
余弦定理:(ar)^2=a^2+(ar^2)^2-2a(ar^2)cosB
整理得2r^4-5r^2+2=0r=1/√2或r=√2
所以三边的比为1:√2:2或者2:√2:1
因此不妨令a为最短边(若令c为最短边,结果一致)
从三角函数关系易得sinB=√7/4
通过正弦定理,sinA=√7/(4√2),sinC=√7/(2√2)
通过余弦定理,或sin^2+cos^2=1可以求出cosA=5/(4√2),cosC=-1/(2√2)
cotA+cotC=5/√7-1/√7=4/√7
a*c*cosB=3/2得ac=2,c=2a=>a=1,c=2a+c=3
已知a.b.c成等比数列
所以a*c=b^2
正弦定理,a/sinA=b/sinB=c/sinC
sinA=a/b*sinB,sinC=c/b*sinC
又因为cosB=3/4sin^2B+cos^2B=1
sinB=7^(1/2)/4
然后再算,如果是
(1)求cotA+cotC的值;
(2)设向量BA点乘向量BC=3/2,求a+c的值.推荐看
http://zhidao.baidu.com/question/34008870.html
法二
a,b,c成等比数列,则可表示为a,ar,ar^2
余弦定理:(ar)^2=a^2+(ar^2)^2-2a(ar^2)cosB
整理得2r^4-5r^2+2=0r=1/√2或r=√2
所以三边的比为1:√2:2或者2:√2:1
因此不妨令a为最短边(若令c为最短边,结果一致)
从三角函数关系易得sinB=√7/4
通过正弦定理,sinA=√7/(4√2),sinC=√7/(2√2)
通过余弦定理,或sin^2+cos^2=1可以求出cosA=5/(4√2),cosC=-1/(2√2)
cotA+cotC=5/√7-1/√7=4/√7
a*c*cosB=3/2得ac=2,c=2a=>a=1,c=2a+c=3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询