逆矩阵的求解方法有几种

 我来答
撒菁淳于小琴
2020-01-04 · TA获得超过3653个赞
知道大有可为答主
回答量:3093
采纳率:25%
帮助的人:200万
展开全部
行初等变换法,求伴随矩阵法
行初等变换法比较常用,我说明一下其方法以及方法的来源和证明过程。
行初等变换法
:
因为矩阵A可逆,则逆矩阵A-1可逆(AA-1=E
det(AA-1)=detA*detA-1=detE=1
则detA-1!=0)矩阵A经过一系列的初等变换(包括行变换和列变换得到E(需要证明)
证明:(证明前说明一个问题:一个矩阵进行一次行变换相当于左乘一个m阶初等矩阵,进行一次列变换相当于右乘一个n阶初等矩阵(初等矩阵就是由单位矩阵进行一次初等变换得到的矩阵(初等变换包括三种方式即:交换矩阵某两行,某两列或者将矩阵的某一行或某一列的k倍加到另一行或另一列去))那么即是p1*p2*……*pn*A*q1*q2*……qn=E(并不是直接得到E,而是一个只与E和O有关的矩阵,但由于qn,pn的行列式都不为0,则得到的与和O有关的矩阵的行列式不为0,则该矩阵为E,这里说明A必须为n阶矩阵)p1*p2*……*pn*A*q1*q2*……qn=E两边同时乘以pn,qn的逆矩阵)则得到A=pn-1*……p1-1*qn-1*……*q1-1)
,那么同理我们可以将A-1表示为A-1=G1*G2*……Gn,(G1、G2……Gn均为初等矩阵)也可以写成A-1=G1*G2*……Gn*E(因为一个矩阵乘以E还是原矩阵)两边同时右乘A,即A-1*A=G1*G2*……Gn*A,则E=G1*G2*……Gn*A,这就是说E经过一系列行初等变换(就是交换E的两行或者将E的某一行的K倍加到另一行去)得到A-1,而A经过与上面相同的行变换得到E,那么我们可以这样表示(A,E)~一系列行变换~(E,A-1),因此我们可以把A,E放在一起形成一个2n阶矩阵,在经过一系列行初等变换,当A变为E时,E变为A-1.
犁冰真招宾
2020-01-08 · TA获得超过3.1万个赞
知道大有可为答主
回答量:1.1万
采纳率:32%
帮助的人:758万
展开全部
一般有2种方法:
1.
伴随矩阵法.A的逆矩阵=A的伴随矩阵/A的行列式;
2.
初等变换法.A和单位矩阵同时进行初等行(或列)变换,当A变成单位矩阵的时候,单位矩阵就变成了A的逆矩阵.
第2种方法比较简单,而且变换过程还可以发现矩阵A是否可逆(即A的行列式是否等于0).
伴随矩阵的求法参见教材.矩阵可逆的充要条件是系数行列式不等于零.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
盈康乐恽琳
游戏玩家

2020-01-12 · 游戏我都懂点儿,问我就对了
知道大有可为答主
回答量:1.1万
采纳率:32%
帮助的人:882万
展开全部
一般有2种方法。
1、伴随矩阵法。a的逆矩阵=a的伴随矩阵/a的行列式。
2、初等变换法。a和单位矩阵同时进行初等行(或列)变换,当a变成单位矩阵的时候,单位矩阵就变成了a的逆矩阵。
第2种方法比较简单,而且变换过程还可以发现矩阵a是否可逆(即a的行列式是否等于0)。
伴随矩阵的求法参见教材。矩阵可逆的充要条件是系数行列式不等于零。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式