如图,已知在RT△ABC中,AB=AC,∠BAC=90°,BD为角平分线,CE⊥BD交BD的延长线于点E,求证:BD=2C
1个回答
展开全部
延长CE与BA延长线交于F。BD为角平分线:∠FBE=∠CBE
∠BEF=∠BEC=90(CE⊥BD)。BE=BE,三角形FBE全等于BCE,则CE=EF(这部分其实可以用BE是角平分线、高,同时也是中线来证明,即三线合一)。
CF=2CE
∠BEF=90,∠AFC+∠ABD=∠ADB+∠ABD=90
∠ADB=∠AFC,AB=AC。所以三角形ABD全等于ACF,
则BD=CF、BD=2CE
∠BEF=∠BEC=90(CE⊥BD)。BE=BE,三角形FBE全等于BCE,则CE=EF(这部分其实可以用BE是角平分线、高,同时也是中线来证明,即三线合一)。
CF=2CE
∠BEF=90,∠AFC+∠ABD=∠ADB+∠ABD=90
∠ADB=∠AFC,AB=AC。所以三角形ABD全等于ACF,
则BD=CF、BD=2CE
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询