计算三重积分 ∫∫∫(x^2+y^2+z)dxdydz 其中D为曲面z=1-x^2-y^2与xOy平面所围成的区域.

 我来答
税礼滕凰
2020-01-03 · TA获得超过3.8万个赞
知道大有可为答主
回答量:1.4万
采纳率:35%
帮助的人:841万
展开全部
曲面z=1-x^2-y^2是一个倒扣的旋转抛物面,顶点是(0,0,1),
在XOY平面投影是一个半径为1的圆
,把空间坐标系转换为柱面坐标较简单,
原式=
4∫(0→π/2)dθ∫(0→1)dr∫(0→1)(rcosθ)^2+(rsinθ)^2+z)rdz
=
4∫(0→π/2)dθ∫(0→1)dr∫(0→1)(r^3+zr)dz
=4∫(0→π/2)dθ∫(0→1)dr[r^3z+z^2r/2](0→1)
=4∫(0→π/2)dθ∫(0→1)(r^3+r/2)dr
=4∫(0→π/2)dθ(r^4/4+r^2/4)(0→1)
=4∫(0→π/2)(1/4+1/4)dθ
=4(θ/2)(0→π/2)
=π.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式