若x+y+z=-2,xy+yz+xz=1,则x^2+y^2+z^2的值是
8个回答
展开全部
http://zhidao.baidu.com/question/90516654.html
x+y+z=-2,xy+yz+xz=1
x的平方+y的平方+z的平方
=(x+y+z)^2-2(xy+yz+xz)
=4-2
=2
x+y+z=-2,xy+yz+xz=1
x的平方+y的平方+z的平方
=(x+y+z)^2-2(xy+yz+xz)
=4-2
=2
展开全部
x+y+z=-2
两边平方得:
x²+y²+z²+2xy+2xz+2yz=4
x²+y²+z²+2(xy+xz+yz)=4
x²+y²+z²+2×1=4
x²+y²+z²=4-2
x²+y²+z²=2
两边平方得:
x²+y²+z²+2xy+2xz+2yz=4
x²+y²+z²+2(xy+xz+yz)=4
x²+y²+z²+2×1=4
x²+y²+z²=4-2
x²+y²+z²=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为:x+y+z=-2
所以(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+xz)=(-2 )^2=4
因为:xy+yz+xz=1
所以:2(xy+yz+xz)=2
所以:x^2+y^2+z^2=2
所以(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+xz)=(-2 )^2=4
因为:xy+yz+xz=1
所以:2(xy+yz+xz)=2
所以:x^2+y^2+z^2=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(x+y+z)²=4
x^2+y^2+z^2+2xy+2yz+2xz=4
x^2+y^2+z^2
=4-2(xy+yz+xz)
=2
x^2+y^2+z^2+2xy+2yz+2xz=4
x^2+y^2+z^2
=4-2(xy+yz+xz)
=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(x+y+z)^2
=x^2+y^2+z^2+2xy+2yz+2zx
=x^2+y^2+z^2+2(xy+yz+xz)
=x^2+y^2+z^2+2
=(-2)^2=4
所以,x^2+y^2+z^2=2
=x^2+y^2+z^2+2xy+2yz+2zx
=x^2+y^2+z^2+2(xy+yz+xz)
=x^2+y^2+z^2+2
=(-2)^2=4
所以,x^2+y^2+z^2=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=4-2=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询