如图,四边形ABCD内接于圆,对角线AC与BD相交于点E、F在AC上...
展开全部
(1)
AB=AD==>弧AB=弧AD,∠ADB=∠ABD
弧AB对应的圆周角有两个∠ACB=∠ADB
弧AD对应的圆周角有两个∠ACD=∠ABD
∠ACB=∠ADB=∠ABD=∠ACD
∠ADB=180-∠BAD=90-∠DFC
∠ADB+∠DFC=90
CD⊥DF
(2)过F做FG垂直BC
因为∠ACB=∠ADB
又∠BFC=∠BAD
所以∠FBC=∠ABD=∠ADB=∠ACB
则FB=FC
所以FG平分BC,G为BC中点,∠GFC=1/2∠BAD=∠DFC
证明三角形FGC全等于三角形DFC(∠GFC=∠DFC,FC=FC,∠ACB=∠ACD)
所以CD=GC=1/2BC
BC=2CD
AB=AD==>弧AB=弧AD,∠ADB=∠ABD
弧AB对应的圆周角有两个∠ACB=∠ADB
弧AD对应的圆周角有两个∠ACD=∠ABD
∠ACB=∠ADB=∠ABD=∠ACD
∠ADB=180-∠BAD=90-∠DFC
∠ADB+∠DFC=90
CD⊥DF
(2)过F做FG垂直BC
因为∠ACB=∠ADB
又∠BFC=∠BAD
所以∠FBC=∠ABD=∠ADB=∠ACB
则FB=FC
所以FG平分BC,G为BC中点,∠GFC=1/2∠BAD=∠DFC
证明三角形FGC全等于三角形DFC(∠GFC=∠DFC,FC=FC,∠ACB=∠ACD)
所以CD=GC=1/2BC
BC=2CD
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询