已知函数f(x)=(1+a/x)e^x,其中a>0 (1)求函数的零点 (2)讨论y=f(x)在区间(负无穷,0)上的单调性 (
已知函数f(x)=(1+a/x)e^x,其中a>0(1)求函数的零点(2)讨论y=f(x)在区间(负无穷,0)上的单调性(3)在区间(负无穷,-a/2】上,f(x)是否存...
已知函数f(x)=(1+a/x)e^x,其中a>0
(1)求函数的零点
(2)讨论y=f(x)在区间(负无穷,0)上的单调性
(3)在区间(负无穷,-a/2】上,f(x)是否存在最小值?若存在,求出最小值;若不存在,请说明理由
请详细解答 展开
(1)求函数的零点
(2)讨论y=f(x)在区间(负无穷,0)上的单调性
(3)在区间(负无穷,-a/2】上,f(x)是否存在最小值?若存在,求出最小值;若不存在,请说明理由
请详细解答 展开
3个回答
展开全部
先复合函数求导,求的f(x)的导数为[(x^2+ax)e^x-a(e^x)]/x^2,
令f'(x)=0,即(x^2+ax)e^x=a(e^x),即x^2+ax-a=0,
因为a^2+4a>0恒成立(a>0),所以求得方程的解为x1,x2,
因为定义域为x小于0,a^2+4a>a^2,所以方程的一解>0,舍去,
显然另一解(暂用x1代替)小于0,
当x属于(负无穷大,x1)时,f'(x)>0,f(x)为增函数。
当x属于(x1,0)时,f'(x)小于0,f(x)为减函数。
综上,f(x)的单调增区间为(负无穷大,x1),单调减区间为(x1,0)。
令f'(x)=0,即(x^2+ax)e^x=a(e^x),即x^2+ax-a=0,
因为a^2+4a>0恒成立(a>0),所以求得方程的解为x1,x2,
因为定义域为x小于0,a^2+4a>a^2,所以方程的一解>0,舍去,
显然另一解(暂用x1代替)小于0,
当x属于(负无穷大,x1)时,f'(x)>0,f(x)为增函数。
当x属于(x1,0)时,f'(x)小于0,f(x)为减函数。
综上,f(x)的单调增区间为(负无穷大,x1),单调减区间为(x1,0)。
展开全部
解:(Ⅰ)f(x)=0,得x=-a,所以函数f(x)的零点为-a.(2分)
(Ⅱ)函数f(x)在区域(-∞,0)上有意义,f′(x)=x2+ax-a x2 ex,(5分)
令f′(x)=0,得x1=-a- a2+4a 2 ,x2=-a+ a2+4a 2 ,
因为a>0,所以x1<0,x2>0.(7分)
当x在定义域上变化时,f'(x)的变化情况如下:
所以在区间(-∞,-a- a2+4a 2 )上f(x)是增函数,(8分)
在区间(-a- a2+4a 2 ,0)上f(x)是减函数.(9分)
(Ⅲ)在区间(-∞,-a 2 ]上f(x)存在最小值f(-a 2 ).(10分)
证明:由(Ⅰ)知-a是函数f(x)的零点,
因为-a-x1=-a--a- a2+4a 2 =-a+ a2+4a 2 >0,
所以x1<-a<0,(11分)
由f(x)=(1+a x )ex知,当x<-a时,f(x)>0,(12分)
又函数在(x1,0)上是减函数,且x1<-a<-a 2 <0,
所以函数在区间(-x1,-a 2 ]上的最小值为f(-a 2 ),且f(-a 2 )<0,(13分)
所以函数在区间(-∞,-a 2 ]上的最小值为f(-a 2 ),
计算得f(-a 2 )=-e-a 2 .(14分)
(Ⅱ)函数f(x)在区域(-∞,0)上有意义,f′(x)=x2+ax-a x2 ex,(5分)
令f′(x)=0,得x1=-a- a2+4a 2 ,x2=-a+ a2+4a 2 ,
因为a>0,所以x1<0,x2>0.(7分)
当x在定义域上变化时,f'(x)的变化情况如下:
所以在区间(-∞,-a- a2+4a 2 )上f(x)是增函数,(8分)
在区间(-a- a2+4a 2 ,0)上f(x)是减函数.(9分)
(Ⅲ)在区间(-∞,-a 2 ]上f(x)存在最小值f(-a 2 ).(10分)
证明:由(Ⅰ)知-a是函数f(x)的零点,
因为-a-x1=-a--a- a2+4a 2 =-a+ a2+4a 2 >0,
所以x1<-a<0,(11分)
由f(x)=(1+a x )ex知,当x<-a时,f(x)>0,(12分)
又函数在(x1,0)上是减函数,且x1<-a<-a 2 <0,
所以函数在区间(-x1,-a 2 ]上的最小值为f(-a 2 ),且f(-a 2 )<0,(13分)
所以函数在区间(-∞,-a 2 ]上的最小值为f(-a 2 ),
计算得f(-a 2 )=-e-a 2 .(14分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-04-03
展开全部
(1)令f(x)=0(x不=0) 因为a>0 e^x>0 当1+a/x=0 x=-a
(2) f(x)'=e^x-ae^x/x^2(x<0)
=(x^2e^x-ae^x)/x^2
令g(x)=x^2e^x-ae^x
x^2=a x=-a (负无穷,-a)单调增(-a,0)单调减
(3)有最小值f(-a/2)=(1+a/(-a/2))e^(-a/2)
=-e^(-a/2)
(2) f(x)'=e^x-ae^x/x^2(x<0)
=(x^2e^x-ae^x)/x^2
令g(x)=x^2e^x-ae^x
x^2=a x=-a (负无穷,-a)单调增(-a,0)单调减
(3)有最小值f(-a/2)=(1+a/(-a/2))e^(-a/2)
=-e^(-a/2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询