三角形外接园与内接圆半径与三边边长的关系

 我来答
边叡沃寒香
2019-06-14 · TA获得超过1172个赞
知道小有建树答主
回答量:1503
采纳率:84%
帮助的人:8.2万
展开全部
1.外接圆半径R:
根据正弦定理以及余弦定理
a/sinA=b/sinB=c/sinC=2R
a2=2bc•cosA
可得:
cosA=(b2+c2-a2)/2bc
∵ sin2A+cos2A=1,∠A∈(0,180°)
∴ sinA=√(1-cos2A)
=√[(a2+b2+c2)2—2(a4+b4+c4)] / (2bc)
代入正弦定理a/sinA=2R,得:
R=2abc /√[(a2+b2+c2)2—2(a4+b4+c4)]
(三角形外接圆半径与三边边长、面积的关系可推导得:R=abc/4S)
2.内接圆半径r:
∵ r=2S/(a+b+c) (S是三角形面积)
且根据众所周知的秦九韶—海伦公式,
S=√[p(p-a)(p-b)(p-c)],其中p=(a+b+c)/2
∴ r=2√[p(p-a)(p-b)(p-c)] /(a+b+c)
3.三角形外接圆半径、内接圆半径与三边边长的关系可表示为:
R*r=(abc/4S)*[2S/(a+b+c)]=abc/2(a+b+c)
说明:
外接圆半径是指三角形三条边的垂直平分线(中垂线)的交点到三个顶点的距离;
内接圆半径是指三角形三条边上的高线的交点到三条边的距离.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式