在空间四边形ABCD中,AC=8,BD=6,E,F分别是AD,BC的中点,且EF=5,角BDC=90度,
1个回答
展开全部
证明如下:
1:过CD中点G连结FG,DG,则可知BD//FG,EG//AC,
由于∠BDC=90,即是BD⊥CD,由中性线性质知道:FG=1/2*BD=3;EG=1/2*AC=4,又因为
EF=5,因此三角形EFG是直角三角形,有FG⊥EG,即是BD⊥AC
因为AC与CD是平面内相交的两条直线,因此的证。
2:这个比较简单,由于BD⊥面ACD,而FG//BD,因此FG⊥面ACD,
因此FG就是点F到平面ACD的距离,由上面可知该距离为3,完毕。
不知道对不对,楼主自己看一下啊~~
1:过CD中点G连结FG,DG,则可知BD//FG,EG//AC,
由于∠BDC=90,即是BD⊥CD,由中性线性质知道:FG=1/2*BD=3;EG=1/2*AC=4,又因为
EF=5,因此三角形EFG是直角三角形,有FG⊥EG,即是BD⊥AC
因为AC与CD是平面内相交的两条直线,因此的证。
2:这个比较简单,由于BD⊥面ACD,而FG//BD,因此FG⊥面ACD,
因此FG就是点F到平面ACD的距离,由上面可知该距离为3,完毕。
不知道对不对,楼主自己看一下啊~~
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询