设数列{an}的前n项和为Sn,Sn={a1[(3^n)-1]}/2 (对于所有n≥1),且a5=54,则a1的数值是?
展开全部
a1=2/3
由题目可知
S1=a1=a1(3^1-1)/2
S2=a1(3^2-1)/2=4*a1=a1+3*a1
S3=a1(3^3-1)/2=13*a1=a1+3*a1+9*a1
S4=a1(3^4-1)/2=40*a1=a1+3*a1+9*a1+27*a1
S5=a1(3^5-1)/2=121*a1=a1+3*a1+9*a1+27*a1+81*a1
S5-S4=a5
所以a5=81*a1=54
那么a1=2/3
由题目可知
S1=a1=a1(3^1-1)/2
S2=a1(3^2-1)/2=4*a1=a1+3*a1
S3=a1(3^3-1)/2=13*a1=a1+3*a1+9*a1
S4=a1(3^4-1)/2=40*a1=a1+3*a1+9*a1+27*a1
S5=a1(3^5-1)/2=121*a1=a1+3*a1+9*a1+27*a1+81*a1
S5-S4=a5
所以a5=81*a1=54
那么a1=2/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询