这个极限咋求
1个回答
展开全部
x->0+
(1+x)^(1/x)
=e^[ln(1+x)/x ]
=e^[ 【x-(1/2)x^2 +o(x^2)】/x]
=e^[ 1-(1/2)x +o(x) ]
(1+x)^(1/x) /e
=e^[ -(1/2)x +o(x) ]
=1 -(1/2)x +o(x)
lim(x->0+) [(1+x)^(1/x) /e ]^(1/x)
=lim(x->0+) [ 1- (1/2)x ]^(1/x)
=e^(-1/2)
(1+x)^(1/x)
=e^[ln(1+x)/x ]
=e^[ 【x-(1/2)x^2 +o(x^2)】/x]
=e^[ 1-(1/2)x +o(x) ]
(1+x)^(1/x) /e
=e^[ -(1/2)x +o(x) ]
=1 -(1/2)x +o(x)
lim(x->0+) [(1+x)^(1/x) /e ]^(1/x)
=lim(x->0+) [ 1- (1/2)x ]^(1/x)
=e^(-1/2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询