设函数f(x)的导函数为f'(x)

设函数f(x)的导函数为f'(x),对任意x都有f'(x)>f(x),比较3f(ln2)与2f(ln3)... 设函数f(x)的导函数为f'(x),对任意x 都有f'(x)>f(x),比较3f(ln2)与2f(ln3) 展开
 我来答
简漠谷尔白
2020-03-15 · TA获得超过1221个赞
知道小有建树答主
回答量:1946
采纳率:91%
帮助的人:9.4万
展开全部
设h(x)=e^(-x)f(x)
求导后得到h‘(x)=e^(-x)(f'(x)-f(x))
因为对任意x 都有f'(x)>f(x),
所以h‘(x)=e^(-x)(f'(x)-f(x))>0恒成立
所以h(x)在定义域上单调递增
故h(ln3)>h(ln2)
得到f(ln3)/3>f(ln2)/2
即2f(ln3)>3f(ln2)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式