解绝对值不等式时,有几种常见的方法

 我来答
函懋典涵涤
2020-09-02 · TA获得超过1135个赞
知道小有建树答主
回答量:478
采纳率:90%
帮助的人:8.3万
展开全部
一、
绝对值定义法
对于一些简单的,一侧为常数的含不等式绝对值,直接用绝对值定义即可,
1、如|x|
<
a在数轴上表示出来。利用数轴可将解集表示为−a<
x
<
a
2、|x|

a同理可在数轴上表示出来,因此可得到解集为x≥
a或x≤
a
3、|ax
+b|

c型,利用绝对值性质化为不等式组−c

ax
+
b

c,再解不等式组。
二、平方法
对于不等式两边都是绝对值时,可将不等式两边同时平方。
解不等式
|x+
3|
>
|x−
1|将等式两边同时平方为(x
+
3)2
>
(x

1)2得到x2
+
6x
+
9
>
x2

2x
+
1之后解不等式即可,解得x
>
−1
三、零点分段法
对于不等式中含有有两个及以上绝对值,且含有常数项时,一般使用零点分段法。例
解不等式|x
+
1|
+
|x

3|
>
5
在数轴上可以看出,数轴可以分成x
<
−1,−1

x
<
3,
x

3三个区间,由此进行分类讨论。
当x
<
−1时,因为x
+
1
<
0,
x

3
<
0所以不等式化为
−x−
1
−x
+
3
>
5解得x
<
−322.当−1
≤x
<
3时,
因为x
+
1
>
0,x−
3
<
0所以不等式化为x
+
1

x
+
3
>
5无解。

x

3时
因为x
+
1
>
0
,x

3
>
0所以不等式化为x
+
1
+
x−
3
>
5解得x
>72综上所述,不等式的解为x
<
−32或x
>72。
扩展资料
1、实数的绝对值的概念
(1)|a|的几何意义
|a|表示数轴上实数a对应的点与原点之间的距离.
(2)两个重要性质
①(ⅰ)|ab|=|a||b|
②|a|<|b|⇔a2<b2
(3)|x-a|的几何意义:数轴上实数x对应的点与实数a对应的点之间的距离,或数轴上表示x-a的点到原点的距离.
(4)|x+a|的几何意义:数轴上实数x对应的点与实数-a对应的点之间的距离,或数轴上表示x+a的点到原点的距离。
2、绝对值不等式定理
(1)定理:对任意实数a和b,有|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.
(2)定理的另一种形式:对任意实数a和b,有|a-b|≤|a|+|b|,当且仅当ab≤0时,等号成立.
绝对值不等式定理的完整形式:|a|-|b|≤|a±b|≤|a|+|b|.
其中,(1)|a+b|=|a|-|b|成立的条件是ab≤0,且|a|≥|b|;
(2)|a+b|=|a|+|b|成立的条件是ab≥0;
(3)|a-b|=|a|-|b|成立的条件是ab≥0,且|a|≥|b|;
(4)|a-b|=|a|+|b|成立的条件是ab≤0.
蒙范告音华
2019-10-06 · TA获得超过1199个赞
知道小有建树答主
回答量:1698
采纳率:95%
帮助的人:7.8万
展开全部
绝对值不等式解法的基本思路是:去掉绝对值符号,把它转化为一般的不等式求解,转化的方法一般有:(1)绝对值定义法;(2)平方法;(3)零点区域法。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式