求二阶微分方程xy''+y'=0的通解 答案是:y=C1In|x|+C2 有过程且对加分

 我来答
甲放贡千雁
2019-03-29 · TA获得超过1220个赞
知道小有建树答主
回答量:3815
采纳率:90%
帮助的人:26.6万
展开全部
前面那位的解答简捷灵活.下面给出另一解法:
这是不显含未知函数y的微分方程,属于可降阶的高阶微分方程.
这类方程的常规解法是:令y'=p,则y"=p',方程化为 xp'+p=0,
即 dp/p=-dx/x 【一阶可分离变量方程】
解得 p=C(1)/x
即 y'=C(1)/x
所以 y=C(1)In|x|+C(2).
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式