1个回答
展开全部
将直角坐标系转换成极坐标,
以原点为极点,x轴正半轴为极轴,建立极坐标系。则椭圆方程为 ρ^2(cosθ)^2/a^2+ρ^2(sinθ)^2/b^2=1 (x=ρcosθ,y=ρsinθ)
设A(ρ1,φ),B(ρ2,φ+2π/3),C(ρ3,φ+4π/3),则 (cosφ)^2/a^2+(sinφ)^2/b^2=1/(ρ1)^2,(cosφ+2π/3)^2/a^2+(sinφ+2π/3)^2/b^2=1/(ρ2)^2,(cosφ+4π/3)^2/a^2+(sinφ+4π/3)^2/b^2=1/(ρ3)^2
所以 1/|OA|^2+1/|OB|^2+1/|OC|^2=(cosφ)^2/a^2+(sinφ)^2/b^2+(cosφ+2π/3)^2/a^2+(sinφ+2π/3)^2/b^2+,(cosφ+4π/3)^2/a^2+(sinφ+4π/3)^2/b^2
所以 1/|OA|^2+1/|OB|^2+1/|OC|^2=1.5/a^2+1.5/b^2
以原点为极点,x轴正半轴为极轴,建立极坐标系。则椭圆方程为 ρ^2(cosθ)^2/a^2+ρ^2(sinθ)^2/b^2=1 (x=ρcosθ,y=ρsinθ)
设A(ρ1,φ),B(ρ2,φ+2π/3),C(ρ3,φ+4π/3),则 (cosφ)^2/a^2+(sinφ)^2/b^2=1/(ρ1)^2,(cosφ+2π/3)^2/a^2+(sinφ+2π/3)^2/b^2=1/(ρ2)^2,(cosφ+4π/3)^2/a^2+(sinφ+4π/3)^2/b^2=1/(ρ3)^2
所以 1/|OA|^2+1/|OB|^2+1/|OC|^2=(cosφ)^2/a^2+(sinφ)^2/b^2+(cosφ+2π/3)^2/a^2+(sinφ+2π/3)^2/b^2+,(cosφ+4π/3)^2/a^2+(sinφ+4π/3)^2/b^2
所以 1/|OA|^2+1/|OB|^2+1/|OC|^2=1.5/a^2+1.5/b^2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询