数学问题如图? 100
3个回答
展开全部
x-->0,y-->0时|sin(1/y)|≤1,xsin(1/y)-->0,
[2-√(xy+4)]/(xy)
=[4-(xy+4)]/{xy[2+√(xy+4)]
-->-1/4,
所以原式-->-1/4..
[2-√(xy+4)]/(xy)
=[4-(xy+4)]/{xy[2+√(xy+4)]
-->-1/4,
所以原式-->-1/4..
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(x,y)->(0,0)
√(xy+4)
= 2( 1+ xy/4)^(1/2)
= 2 [ 1+ (1/8)xy +o(xy) ]
2-√(xy+4)
=-(1/4)xy
lim(x,y)->(0,0) { xsin(1/y) + [2-√(xy+4)]/(xy) }
=0+lim(x,y)->(0,0) [2-√(xy+4)]/(xy)
=lim(x,y)->(0,0) -(1/4)xy/(xy)
=-1/4
√(xy+4)
= 2( 1+ xy/4)^(1/2)
= 2 [ 1+ (1/8)xy +o(xy) ]
2-√(xy+4)
=-(1/4)xy
lim(x,y)->(0,0) { xsin(1/y) + [2-√(xy+4)]/(xy) }
=0+lim(x,y)->(0,0) [2-√(xy+4)]/(xy)
=lim(x,y)->(0,0) -(1/4)xy/(xy)
=-1/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询