谁有一套2010年中考数学压轴题???要很难很难,很有价值的那种。。。多多益善。。。

有的发到我邮箱wxyhyswy@sina.com采纳后至少追加5分... 有的发到我邮箱wxyhyswy@sina.com采纳后至少追加5分 展开
 我来答
409533139
2011-04-11
知道答主
回答量:3
采纳率:0%
帮助的人:0
展开全部
\

22.(中山市)如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2.动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动.连接FM、FN,当F、N、M不在同一直线时,可得△FMN,过△FMN三边的中点作△PWQ.设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒.试解答下列问题:
(1)说明△FMN∽△QWP;
(2)设0≤x≤4(即M从D到A运动的时间段).试问x为何值时,△PWQ为直角三角形?当x在何范围时,△PQW不为直角三角形?
(3)问当x为何值时,线段MN最短?求此时MN的值.

24.(青岛市本小题满分12分)已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC = 8 cm,BC = 6 cm,EF = 9 cm.
如图(2),△DEF从图(1)的位置出发,以1 cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2 cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动.DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5).解答下列问题:
(1)当t为何值时,点A在线段PQ的垂直平分线上?
(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由.
(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.(图(3)供同学们做题使用)

解:(1)∵点A在线段PQ的垂直平分线上,
∴AP = AQ.
∵∠DEF = 45°,∠ACB = 90°,∠DEF+∠ACB+∠EQC = 180°,
∴∠EQC = 45°.
∴∠DEF =∠EQC.
∴CE = CQ.
由题意知:CE = t,BP =2 t,
∴CQ = t.
∴AQ = 8-t.
在Rt△ABC中,由勾股定理得:AB = 10 cm .
则AP = 10-2 t.
∴10-2 t = 8-t.
解得:t = 2.
答:当t = 2 s时,点A在线段PQ的垂直平分线上. 4分
(2)过P作 ,交BE于M,
∴ .
在Rt△ABC和Rt△BPM中, ,
∴ . ∴PM = .
∵BC = 6 cm,CE = t, ∴ BE = 6-t.
∴y = S△ABC-S△BPE = - = -
= = .
∵ ,∴抛物线开口向上.
∴当t = 3时,y最小= .
答:当t = 3s时,四边形APEC的面积最小,最小面积为 cm2. 8分
(3)假设存在某一时刻t,使点P、Q、F三点在同一条直线上.
过P作 ,交AC于N,
∴ .
∵ ,∴△PAN ∽△BAC.
∴ .
∴ .
∴ , .
∵NQ = AQ-AN,
∴NQ = 8-t-( ) = .
∵∠ACB = 90°,B、C(E)、F在同一条直线上,
∴∠QCF = 90°,∠QCF = ∠PNQ.
∵∠FQC = ∠PQN,
∴△QCF∽△QNP .
∴ . ∴ .
∵ ∴
解得:t = 1.
答:当t = 1s,点P、Q、F三点在同一条直线上. 12分

22、(南充市)已知抛物线 上有不同的两点E 和F .
(1)求抛物线的解析式.
(2)如图,抛物线 与x轴和y轴的正半轴分别交于点A和B,M为AB的中点,∠PMQ在AB的同侧以M为中心旋转,且∠PMQ=45°,MP交y轴于点C,MQ交x轴于点D.设AD的长为m(m>0),BC的长为n,求n和m之间的函数关系式.
(3)当m,n为何值时,∠PMQ的边过点F.

解:(1)抛物线 的对称轴为 . ……..(1分)
∵ 抛物线上不同两个点E 和F 的纵坐标相同,
∴ 点E和点F关于抛物线对称轴对称,则 ,且k≠-2.
∴ 抛物线的解析式为 . ……..(2分)
(2)抛物线 与x轴的交点为A(4,0),与y轴的交点为B(0,4),
∴ AB= ,AM=BM= . ……..(3分)
在∠PMQ绕点M在AB 同侧旋转过程中,∠MBC=∠DAM=∠PMQ=45°,
在△BCM中,∠BMC+∠BCM+∠MBC=180°,即∠BMC+∠BCM=135°,
在直线AB上,∠BMC+∠PMQ+∠AMD=180°,即∠BMC+∠AMD=135°.
∴ ∠BCM=∠AMD.
故 △BCM∽△AMD. ……..(4分)
∴ ,即 , .
故n和m之间的函数关系式为 (m>0). ……..(5分)
(3)∵ F 在 上,
∴ ,
化简得, ,∴ k1=1,k2=3.
即F1(-2,0)或F2(-4,-8). ……..(6分)
①MF过M(2,2)和F1(-2,0),设MF为 ,
则 解得, ∴ 直线MF的解析式为 .
直线MF与x轴交点为(-2,0),与y轴 交点为(0,1).
若MP过点F(-2,0 ),则n=4-1=3,m= ;
若MQ过点F(-2,0),则m=4-(-2)=6,n= . ……..(7分)
②MF过M(2,2)和F1(-4,-8),设MF为 ,
则 解得, ∴ 直线MF的解析式为 .
直线MF与x轴交点为( ,0),与y轴交点为(0, ).
若MP过点F(-4,-8),则n=4-( )= ,m= ;
若MQ过点F(-4,-8),则m=4- = ,n= . ……..(8分)
故当 或 时,∠PMQ的边过点F.

24. ((衢州卷)本题12分)
△ABC中,∠A=∠B=30°,AB= .把△ABC放在平面直角坐标系中,使AB的中点位于坐标原点O(如图),△ABC可以绕点O作任意角度的旋转.
(1) 当点B在第一象限,纵坐标是 时,求点B的横坐标;
(2) 如果抛物线 (a≠0)的对称轴经过点C,请你探究:
① 当 , , 时,A,B两点是否都在这条抛物线上?并说明理由;
② 设b=-2am,是否存在这样的m的值,使A,B两点不可能同时在这条抛物线上?若存在,直接写出m的值;若不存在,请说明理由.

. ……1分
由此,可求得点C的坐标为( , ), ……1分
点A的坐标为( , ),
∵ A,B两点关于原点对称,
∴ 点B的坐标为( , ).
将点A的横坐标代入(*)式右边,计算得 ,即等于点A的纵坐标;
将点B的横坐标代入(*)式右边,计算得 ,即等于点B的纵坐标.
∴ 在这种情况下,A,B两点都在抛物线上. ……2分
情况2:设点C在第四象限(如图乙),则点C的坐标为( ,- ),
解:(1) ∵ 点O是AB的中点, ∴ . ……1分
设点B的横坐标是x(x>0),则 , ……1分
解得 , (舍去).
∴ 点B的横坐标是 . ……2分
(2) ① 当 , , 时,得 ……(*)
. ……1分
以下分两种情况讨论.
情况1:设点C在第一象限(如图甲),则点C的横坐标为 ,
点A的坐标为( , ),点B的坐标为( , ).
经计算,A,B两点都不在这条抛物线上. ……1分
(情况2另解:经判断,如果A,B两点都在这条抛物线上,那么抛物线将开口向下,而已知的抛物线开口向上.所以A,B两点不可能都在这条抛物线上)
② 存在.m的值是1或-1. ……2分
( ,因为这条抛物线的对称轴经过点C,所以-1≤m≤1.当m=±1时,点C在x轴上,此时A,B两点都在y轴上.因此当m=±1时,A,B两点不可能同时在这条抛物线上)

24.(莱芜市本题满分12分)
如图,在平面直角坐标系中,已知抛物线 交 轴于 两点,交 轴于点 .
(1)求此抛物线的解析式;
(2)若此抛物线的对称轴与直线 交于点D,作⊙D与x轴相切,⊙D交 轴于点E、F两点,求劣弧EF的长;
(3)P为此抛物线在第二象限图像上的一点,PG垂直于 轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1∶2两部分.

解:(1)∵抛物线 经过点 , , .
∴ , 解得 .
∴抛物线的解析式为: . …………………………3分
(2)易知抛物线的对称轴是 .把x=4代入y=2x得y=8,∴点D的坐标为(4,8).
∵⊙D与x轴相切,∴⊙D的半径为8. …………………………4分
连结DE、DF,作DM⊥y轴,垂足为点M.
在Rt△MFD中,FD=8,MD=4.∴cos∠MDF= .
∴∠MDF=60°,∴∠EDF=120°. …………………………6分
∴劣弧EF的长为: . …………………………7分
(3)设直线AC的解析式为y=kx+b. ∵直线AC经过点 .
∴ ,解得 .∴直线AC的解析式为: . ………8分
设点 ,PG交直线AC于N,
则点N坐标为 .∵ .
∴①若PN∶GN=1∶2,则PG∶GN=3∶2,PG= GN.
即 = .
解得:m1=-3, m2=2(舍去).
当m=-3时, = .
∴此时点P的坐标为 . …………………………10分
②若PN∶GN=2∶1,则PG∶GN=3∶1, PG=3GN.
即 = .
解得: , (舍去).当 时, = .
∴此时点P的坐标为 .
综上所述,当点P坐标为 或 时,△PGA的面积被直线AC分成1∶2 两部分. …………………12分

24. (舟山卷 本题12分)△ABC中,∠A=∠B=30°,AB= .把△ABC放在平面直角坐标系中,使AB的中点位于坐标原点O(如图),△ABC可以绕点O作任意角度的旋转.
(1) 当点B在第一象限,纵坐标是 时,求点B的横坐标;
(2) 如果抛物线 (a≠0)的对称轴经过点C,请你探究:
① 当 , , 时,A,B两点是否都在这条抛物线上?并说明理由;
② 设b=-2am,是否存在这样的m的值,使A,B两点不可能同时在这条抛物线上?若存在,直接写出m的值;若不存在,请说明理由.

解:(1) ∵ 点O是AB的中点, ∴ . ……1分
设点B的横坐标是x(x>0),则 , ……1分
解得 , (舍去).
∴ 点B的横坐标是 . ……2分
(2) ① 当 , , 时,得 ……(*)
. ……1分
以下分两种情况讨论.
情况1:设点C在第一象限(如图甲),则点C的横坐标为 ,
. ……1分
由此,可求得点C的坐标为( , ), ……1分
点A的坐标为( , ),
∵ A,B两点关于原点对称,
∴ 点B的坐标为( , ).
将点A的横坐标代入(*)式右边,计算得 ,即等于点A的纵坐标;
将点B的横坐标代入(*)式右边,计算得 ,即等于点B的纵坐标.
∴ 在这种情况下,A,B两点都在抛物线上. ……2分
情况2:设点C在第四象限(如图乙),则点C的坐标为( ,- ),
点A的坐标为( , ),点B的坐标为( , ).
经计算,A,B两点都不在这条抛物线上. ……1分
(情况2另解:经判断,如果A,B两点都在这条抛物线上,那么抛物线将开口向下,而已知的抛物线开口向上.所以A,B两点不可能都在这条抛物线上)
② 存在.m的值是1或-1. ……2分
( ,因为这条抛物线的对称轴经过点C,所以-1≤m≤1.当m=±1时,点C在x轴上,此时A,B两点都在y轴上.因此当m=±1时,A,B两点不可能同时在这条抛物线上)

25.(2010.十堰)(本小题满分10分)已知关于x的方程mx2-(3m-1)x+2m-2=0
(1)求证:无论m取任何实数时,方程恒有实数根.
(2)若关于x的二次函数y= mx2-(3m-1)x+2m-2的图象与x轴两交点间的距离为2时,求抛物线的解析式.
(3)在直角坐标系xoy中,画出(2)中的函数图象,结合图象回答问题:当直线y=x+b与(2)中的函数图象只有两个交点时,求b的取值范围.
解:(1)分两种情况讨论:
①当m=0 时,方程为x-2=0,∴x=2 方程有实数根
②当m≠0时,则一元二次方程的根的判别式
△=[-(3m-1)]2-4m(2m-2)=m2+2m+1=(m+1)2≥0
不论m为何实数,△≥0成立,∴方程恒有实数根
综合①②,可知m取任何实数,方程mx2-(3m-1)x+2m-2=0恒有实数根.
(2)设x1,x2为抛物线y= mx2-(3m-1)x+2m-2与x轴交点的横坐标.
则有x1+x2= ,x1?x2=
由| x1-x2|= = = = ,
由| x1-x2|=2得 =2,∴ =2或 =-2
∴m=1或m=
∴所求抛物线的解析式为:y1=x2-2x或y2= x2+2x-83
即y1= x(x-2)或y2= (x-2)(x-4)其图象如右图所示.
(3)在(2)的条件下,直线y=x+b与抛物线y1,y2组成的图象只有两个交点,结合图象,求b的取值范围.
,当y1=y时,得x2-3x-b=0,△=9+4b=0,解得b=-94 ;
同理 ,可得△=9-4(8+3b)=0,得b=-2312 .
观察函数图象可知当b<-94 或b>-2312 时,直线y=x+b与(2)中的图象只有两个交点.

当y1=y2时,有x=2或x=1[来源:学§科§网Z§X§X§K]
当x=1时,y=-1
所以过两抛物线交点(1,-1),(2,0)的直线y=x-2,
综上所述可知:当b<-94 或b>-2312 或b=-2时,直线y=x+b与(2)中的图象只有两个交点.

26.(河北省本小题满分12分)
某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.
若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y = x+150,
成本为20元/件,无论销售多少,每月还需支出广告费6250 0元,设月利润为w内(元)(利润 = 销售额-成本-广告费).
若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为
常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳 x2 元的附加费,设月利润为w外(元)(利润 = 销售额-成本-附加费).
(1)当x = 1000时,y = 元/件,w内 = 元;
(2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围);
(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;
(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?
参考公式:抛物线 的顶点坐标是 .
解:(1)140 57500;
(2)w内 = x(y -20)- 62500 = x2+130 x ,
w外 = x2+(150 )x.
(3)当x = = 6500时,w内最大;分
由题意得 ,
解得a1 = 30,a2 = 270(不合题意,舍去).所以 a = 30.
(4)当x = 5000时,w内 = 337500, w外 = .
若w内 < w外,则a<32.5;
若w内 = w外,则a = 32.5;
若w内 > w外,则a>32.5.
所以,当10≤ a <32.5时,选择在国外销售;
当a = 32.5时,在国外和国内销售都一样;
当32.5< a ≤40时,选择在国内销售.

23. (德州市本题满分11分)
已知二次函数 的图象经过点A(3,0),B(2,-3),C(0,-3).
(1)求此函数的解析式及图象的对称轴;
(2)点P从B点出发以每秒0.1个单位的速度沿线段BC向C点运动,点Q从O点出发以相同的速度沿线段OA向A点运动,其中一个动点到达端点时,另一个也随之停止运动.设运动时间为t秒.
①当t为何值时,四边形ABPQ为等腰梯形;
②设PQ与对称轴的交点为M,过M点作x轴的平行线交AB于点N,设四边形ANPQ的面积为S,求面积S关于时间t的函数解析式,并指出t的取值范围;当t为何值时,S有最大值或最小值.

解:(1)∵二次函数 的图象经过点C(0,-3),
∴c =-3.
将点A(3,0),B(2,-3)代入 得
解得:a=1,b=-2.
∴ .-------------------2分
配方得: ,所以对称轴为x=1.-------------------3分
(2) 由题意可知:BP= OQ=0.1t.
∵点B,点C的纵坐标相等,
∴BC‖OA.
过点B,点P作BD⊥OA,PE⊥OA,垂足分别为D,E.
要使四边形ABPQ为等腰梯形,只需PQ=AB.
即QE=AD=1.
又QE=OE-OQ=(2-0.1t)-0.1t=2-0.2t,
∴2-0.2t=1.
解得t=5.
即t=5秒时,四边形ABPQ为等腰梯形.-------------------6分
②设对称轴与BC,x轴的交点分别为F,G.
∵对称轴x=1是线段BC的垂直平分线,
∴BF=CF=OG=1.
又∵BP=OQ,
∴PF=QG.
又∵∠PMF=∠QMG,
∴△MFP≌△MGQ.
∴MF=MG.
∴点M为FG的中点 -------------------8分
∴S= ,
= .
由 = .

∴S= .-------------------10分
又BC=2,OA=3,
∴点P运动到点C时停止运动,需要20秒.
∴0<t≤20.
∴当t=20秒时,面积S有最小值3.------------------11分

26.(宁德市本题满分13分)如图,在梯形ABCD中,AD‖BC,∠B=90°,BC=6,AD=3,∠DCB=30°.点E、F同时从B点出发,沿射线BC向右匀速移动.已知F点移动速度是E点移动速度的2倍,以EF为一边在CB的上方作等边△EFG.设E点移动距离为x(x>0).
⑴△EFG的边长是____(用含有x的代数式表示),当x=2时,点G的位置在_______;
⑵若△EFG与梯形ABCD重叠部分面积是y,求
①当0<x≤2时,y与x之间的函数关系式;
②当2<x≤6时,y与x之间的函数关系式;
⑶探求⑵中得到的函数y在x取含何值时,存在最大值,并求出最大值.

解:⑴ x,D点;………………3分
⑵ ①当0<x≤2时,△EFG在梯形ABCD内部,所以y= x2;………………6分
②分两种情况:
Ⅰ.当2<x<3时,如图1,点E、点F在线段BC上,
△EFG与梯形ABCD重叠部分为四边形EFNM,
∵∠FNC=∠FCN=30°,∴FN=FC=6-2x.∴GN=3x-6.
由于在Rt△NMG中,∠G=60°,
所以,此时 y= x2- (3x-6)2= .………………9分
Ⅱ.当3≤x≤6时,如图2,点E在线段BC上,点F在射线CH上,
△EFG与梯形ABCD重叠部分为△ECP,
∵EC=6-x,
∴y= (6-x)2= .………………11分
⑶当0<x≤2时,∵y= x2在x>0时,y随x增大而增大,
∴x=2时,y最大= ;
当2<x<3时,∵y= 在x= 时,y最大= ;
当3≤x≤6时,∵y= 在x<6时,y随x增大而减小,
∴x=3时,y最大= .………………12分
综上所述:当x= 时,y最大= .………………13分

25.(2010年北京顺义)如图,直线 : 平行于直线 ,且与直线 : 相交于点 .
(1)求直线 、 的解析式;
(2)直线 与y轴交于点A.一动点 从点A出发,先沿平行于x轴的方向运动,到达直线 上的点 处后,改为垂直于x轴的方向运动,到达直线 上的点 处后,再沿平行于x轴的方向运动,到达直线 上的点 处后,又改为垂直于x轴的方向运动,到达直线 上的点 处后,仍沿平行于x轴的方向运动,……
照此规律运动,动点 依次经过点 , , , , , ,…, , ,…
①求点 , , , 的坐标;
②请你通过归纳得出点 、 的坐标;并求当动点 到达 处时,运动的总路径的长.
解:(1)由题意,得 解得
∴直线 的解析式为 . ………………………………… 1分
∵点 在直线 上,
∴ .
∴ .
∴直线 的解析式为 . …………………………… … 2分
(2)① A点坐标为 (0,1),
则 点的纵坐标为1,设 ,
∴ .
∴ .
∴ 点的坐标为 . ………………………………………… 3分[来源:学§科§网]
则 点的横坐标为1,设
∴ .
∴ 点的坐标为 . ………………………………………… 4分
同理,可得 , . ……………………………… 6分
②经过归纳得 , . ……………… 7分
当动点 到达 处时,运动的总路径的长为 点的横纵坐标之和再减去1,
即 . ……………………………………… 8分

24.(宜宾市本题满分l2分)
将直角边长为6的等腰Rt△AOC放在如图所示的平面直角坐标系中,点O为坐标原点,点C、A分别在x、y轴的正半轴上,一条抛物线经过点A、C及点B(–3,0).
(1)求该抛物线的解析式;
(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当△APE的面积最大时,求点P的坐标;
(3)在第一象限内的该抛物线上是否存在点G,使△AGC的面积与(2)中△APE的最大面积相等?若存在,请求出点G的坐标;若不存在,请说明理由.

解:(1)如图,∵抛物线y=ax2+bx+c(a ≠ 0)的图象经过点A(0,6),
∴c=6.…………………………………………1分
∵抛物线的图象又经过点(–3,0)和(6,0),
∴0=9a–3b+60=36a+6b+6 ………………………………2分
解之,得a = – 13b = 1 …………………………3分
故此抛物线的解析式为:y= – 13x2+x+6…………4分
(2)设点P的坐标为(m,0),
则PC=6–m,S△ABC = 12 BC?AO = 12×9×6=27.……………5分
∵PE‖AB,
∴△CEP∽△CAB.…………………………………………6分
∴S△CEPS△CAB = (PCBC)2,即 S△CEP27 = ( 6–m9 ) 2
∴S△CEP = 13(6–m)2.…………………………………………………7分
∵S△APC = 12PC?AO = 12(6–m)?6=3 (6–m)
∴S△APE = S△APC–S△CEP =3 (6–m) – 13(6–m)2 = – 13(m– 32)2+274.
当m = 32时,S△APE有最大面积为274;此时,点P的坐标为(32,0).………8分
(3)如图,过G作GH⊥BC于点H,设点G的坐标为G(a,b),………………9分
连接AG、GC,
∵S梯形AOHG = 12a (b+6),
S△CHG = 12(6– a)b
∴S四边形AOCG = 12a (b+6) + 12(6– a)b=3(a+b).………10分
∵S△AGC = S四边形AOCG –S△AOC
∴274 =3(a+b)–18.……………11分
∵点G(a,b)在抛物线y= – 13x2+x+6的图象上,
∴b= – 13a2+a+6.
∴274 = 3(a – 13a2+a+6)–18
化简,得4a2–24a+27=0
解之,得a1= 32,a2= 92
故点G的坐标为(32,274)或(92,154). ……………………………………12分

24.(荆州市12分)如图,直角梯形OABC的直角顶点O是坐标原点,边OA,OC分别在x轴、y轴的正半轴上,OA‖BC,D是BC上一点,BD= OA= ,AB=3,∠OAB=45°,E、F分别是线段OA、AB上的两动点,且始终保持∠DEF=45°.
(1)直接写出D点的坐标;
(2)设OE=x,AF=y,试确定y与x之间的函数关系;
(3)当△AEF是等腰三角形时,将△AEF沿EF折叠,得到△ ,求△ 与五边形OEFBC重叠部分的面积.

解:(1)D点的坐标是 . (2分)
(2)连结OD,如图(1),由结论(1)知:D在∠COA的平分线上,则
∠DOE=∠COD=45°,又在梯形DOAB中,∠BAO=45°,∴OD=AB=3
由三角形外角定理得:∠1=∠DEA-45°,又∠2=∠DEA-45°
∴∠1=∠2, ∴△ODE∽△AEF (4分)
∴ ,即:
∴y与x的解析式为:
(6分)
(3)当△AEF为等腰三角形时,存在EF=AF或EF=AE或AF=AE共3种情况.
①当EF=AF时,如图(2).∠FAE=∠FEA=∠DEF=45°,
∴△AEF为等腰直角三角形.D在A’E上(A’E⊥OA),
B在A’F上(A’F⊥EF)
∴△A’EF与五边形OEFBC重叠的面积为
四边形EFBD的面积.




∴ (也可用 ) (8分)

②当EF=AE时,如图(3),此时△A’EF与五边形OEFBC重叠部分面积为△A’EF面积.
∠DEF=∠EFA=45°, DE‖AB , 又DB‖EA
∴四边形DEAB是平行四边形
∴AE=DB=

(10分)
③当AF=AE时,如图(4),四边形AEA’F为菱形且△A’EF在五边形OEFBC内.
∴此时△A’EF与五边形OEFBC重叠部分面积为△A’EF面积.
由(2)知△ODE∽△AEF,则OD=OE=3
∴AE=AF=OA-OE=
过F作FH⊥AE于H,则


综上所述,△A’EF与五边形OEFBC重叠部分的面积为 或1或 (12分)
zhzhengzai
2011-04-04
知道答主
回答量:6
采纳率:0%
帮助的人:0
展开全部
挑战中考数学压轴题,很好的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
?>

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式