如图所示,AC,BD相交于点O,BE,CE分别平分∠ABD,∠ACD,∠A=50°,∠D=44°,求∠E的度数.
展开全部
设BE交AC于点M,CE交BD于点N,
则有 ∠BMC=1/2∠B+∠A=∠E+1/2∠C 移项可得 1/2∠B -1/2∠C =∠E -∠A (1)
∠BNC=1/2∠B+∠E=∠D+1/2∠C 移项可得 1/2∠C -1/2∠B =∠E -∠D (2)
(1)+(2)可得 2∠E=∠A+∠D=50°+ 44° = 94°
即 ∠E = 47°
则有 ∠BMC=1/2∠B+∠A=∠E+1/2∠C 移项可得 1/2∠B -1/2∠C =∠E -∠A (1)
∠BNC=1/2∠B+∠E=∠D+1/2∠C 移项可得 1/2∠C -1/2∠B =∠E -∠D (2)
(1)+(2)可得 2∠E=∠A+∠D=50°+ 44° = 94°
即 ∠E = 47°
追问
能简单些么,有点看不懂
追答
这实际上是运用了三角形外角等于不相邻两个内角和的定理。
∠5=∠1+∠A=∠3+∠E
∠6=∠4+∠D=∠2+∠E
因为∠1=∠2,∠3=∠4
可得∠1-∠3=∠E-∠D
∠3-∠1=∠E-∠A
两式相加可得,0=2∠E-∠A-∠D 即 2∠E=∠A+∠D=50°+ 44° = 94°
即∠E=47°
这下明白没
展开全部
三角形的外角性质;角平分线的定义;三角形内角和定理.
分析:运用三角形的外角等于两个不相邻的内角的和,可得∠D+∠DCN=∠E+∠EBN,∠A+∠ABE=∠E+∠ACE,再根据角平分线的定义和等式的性质可得∠D+∠A=2∠E,从而求出∠E的度数.
解答:解:∵∠BNC=∠D+∠DCN,∠BNC=∠E+∠EBN(三角形的外角等于两个不相邻的内角的和),
∴∠D+∠DCN=∠E+∠EBN(等量代换),
同理:∠A+∠ABE=∠E+∠ACE,
∴∠D+∠DCN+∠A+∠ABE=2∠E+∠EBN+∠ACE(等式性质),
∵BE,CE分别平分∠ABD,∠ACD,
∴∠DCN=∠ACE,∠ABE=∠EBN(角平分线的定义),
∴∠D+∠A=2∠E(等式性质),
∵∠A=50°,∠D=44°,
∴∠E=47°.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
三角形的外角性质;角平分线的定义;三角形内角和定理.
分析:运用三角形的外角等于两个不相邻的内角的和,可得∠D+∠DCN=∠E+∠EBN,∠A+∠ABE=∠E+∠ACE,再根据角平分线的定义和等式的性质可得∠D+∠A=2∠E,从而求出∠E的度数.
解答:解:∵∠BNC=∠D+∠DCN,∠BNC=∠E+∠EBN(三角形的外角等于两个不相邻的内角的和),
∴∠D+∠DCN=∠E+∠EBN(等量代换),
同理:∠A+∠ABE=∠E+∠ACE,
∴∠D+∠DCN+∠A+∠ABE=2∠E+∠EBN+∠ACE(等式性质),
∵BE,CE分别平分∠ABD,∠ACD,
∴∠DCN=∠ACE,∠ABE=∠EBN(角平分线的定义),
∴∠D+∠A=2∠E(等式性质),
∵∠A=50°,∠D=44°,
∴∠E=47°.
分析:运用三角形的外角等于两个不相邻的内角的和,可得∠D+∠DCN=∠E+∠EBN,∠A+∠ABE=∠E+∠ACE,再根据角平分线的定义和等式的性质可得∠D+∠A=2∠E,从而求出∠E的度数.
解答:解:∵∠BNC=∠D+∠DCN,∠BNC=∠E+∠EBN(三角形的外角等于两个不相邻的内角的和),
∴∠D+∠DCN=∠E+∠EBN(等量代换),
同理:∠A+∠ABE=∠E+∠ACE,
∴∠D+∠DCN+∠A+∠ABE=2∠E+∠EBN+∠ACE(等式性质),
∵BE,CE分别平分∠ABD,∠ACD,
∴∠DCN=∠ACE,∠ABE=∠EBN(角平分线的定义),
∴∠D+∠A=2∠E(等式性质),
∵∠A=50°,∠D=44°,
∴∠E=47°.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询