(x+y)*(x^2-xy+y^2)-(x-y)*x^2+xy+y^2)

一元六个
2011-04-04 · TA获得超过2.7万个赞
知道大有可为答主
回答量:4102
采纳率:66%
帮助的人:5161万
展开全部
方法一:(x+y)*(x^2-xy+y^2)-(x-y)*x^2+xy+y^2)
=(x+y)*[(x^2+y^2)-xy]-(x-y)[(x^2+y^2)+xy]
=x*(x^2+y^2)-x^2y+y(x^2+y^2)-xy^2-x(x^2+y^2)-x^2y+y(x^2+y^2)+xy^2
=x*(x^2+y^2)-x*(x^2+y^2)-x^2y-x^2y+y*(x^2+y^2)+y*(x^2+y^2)-xy^2+xy^2
=-2x^2y+2y*(x^2+y^2)
=-2x^2y+2yx^2+2y^3
=2y^3
方法二
利用a^3+b^3=(a+b)(a^2-ab+b^2) a^3-b^3=(a-b)(a^2+ab-b^2)
所以(x+y)*(x^2-xy+y^2)=(x+y)^3
(x-y)*x^2+xy+y^2)=(x-y)^3
(x+y)*(x^2-xy+y^2)-(x-y)*(x^2+xy+y^2)
=(x^3+y^3)-(x^3-y^3)
=2y^3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2011-04-04
展开全部
(x+y)*(x^2-xy+y^2)-(x-y)*x^2+xy+y^2)
解:
(x+y)*(x^2-xy+y^2)-(x-y)*x^2+xy+y^2)
=x³+y³-(x³-y³)
=x³+y³-x³+y³
=2y³
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
哓声说话
2011-04-04 · TA获得超过12.2万个赞
知道大有可为答主
回答量:1.9万
采纳率:55%
帮助的人:7551万
展开全部
(x+y)*(x^2-xy+y^2)-(x-y)*x^2+xy+y^2)
=x^3+y^3-x^3-x^2y-xy^2+x^2y+xy^2+y^3
=2y^3
o(∩_∩)o
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式