an为等差数列bn为等比数列,已知an+bn的前n项和为sn
已知等比数列{an}的前n项和为Sn,且an是Sn与2的等差中项,等差数列{bn}中,b1=2,点P(bn,bn+1)在直线y=x+2上,:设Cn=an+bn,求数列{c...
已知等比数列{an}的前n项和为Sn,且an是Sn与2的等差中项,等差数列{bn}中,b1=2,点P(bn,bn+1)在直线y=x+2上,:设Cn=an+bn,求数列{cn}的前n项和Tn
展开
展开全部
∵an是Sn与2的等差中项
∴2an=Sn+2 (*)
令n=1,得2a1=S1+2=a1+2
∴a1=2
由(*)得:
2a(n+1)=S(n+1)+2
两式相减,得:
2a(n+1)-2an=a(n+1)
即a(n+1)=2an
a(n+1)/an=2
∴{an}是以首项a1=2,公比q=2的等比数列
∴an=2•2^(n-1)=2^n
点P(bn,bn+1)在直线y=x+2上
则b(n+1)=bn+2
即b(n+1)-bn=2
∴{bn}是以首项b1=2,公差d=2的等差数列
∴bn=2+(n-1)×2=2n
Cn=an+bn=2^n+2n
用分组求和的方法求Tn即可
Tn=(2+4+……+2^n)+(2+4+6+……+2n)=[2(1-2^n)/(1-2)]+n(2+2n)/2=2^(n+1)+n^2+n-2
∴2an=Sn+2 (*)
令n=1,得2a1=S1+2=a1+2
∴a1=2
由(*)得:
2a(n+1)=S(n+1)+2
两式相减,得:
2a(n+1)-2an=a(n+1)
即a(n+1)=2an
a(n+1)/an=2
∴{an}是以首项a1=2,公比q=2的等比数列
∴an=2•2^(n-1)=2^n
点P(bn,bn+1)在直线y=x+2上
则b(n+1)=bn+2
即b(n+1)-bn=2
∴{bn}是以首项b1=2,公差d=2的等差数列
∴bn=2+(n-1)×2=2n
Cn=an+bn=2^n+2n
用分组求和的方法求Tn即可
Tn=(2+4+……+2^n)+(2+4+6+……+2n)=[2(1-2^n)/(1-2)]+n(2+2n)/2=2^(n+1)+n^2+n-2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
TableDI
2024-07-18 广告
2024-07-18 广告
当使用VLOOKUP函数进行匹配时,如果结果返回“#N/A”错误,这通常意味着在查找表中未找到与查找值相匹配的项。可能的原因有:查找值拼写错误、查找表的范围不正确、查找值不在查找列的列、查找表未进行绝对引用导致范围变动等。为了解决这个问题,...
点击进入详情页
本回答由TableDI提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询