1+1/2+1/3...+1/n的极限 请用柯西收敛原理判定

 我来答
席钊柯丝
2020-05-27 · TA获得超过1185个赞
知道小有建树答主
回答量:1674
采纳率:100%
帮助的人:7.8万
展开全部
这个式子极限不存在,可以用柯西收敛原理判定该式子不收敛.
任意取n,可令m=2n,有
{xm-xn}=1/(n+1)+1/(n+2)+...+1/(n+n)大于或等于1/(n+n)+1/(n+n)+...+1/(n+n)=1/2 ,令a=1/2,则对任意的N,当n>N时候 都有x2n-xn的绝对值要大于a=1/2
由柯西收敛准则知道xn={1+1/2+1/3+...+1/n}发散
附 柯西收敛准则 数列收敛的充分必要条件是 对任意大于0的数a 存在一个大于0的数N,使得 m,n>N,时有 xn-xm的绝对值小于a 该准则可以理解 收敛数列的各项的值越到后面,彼此越接近,以至它们之间的差的绝对值可小雨任意给定的正数
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式