已知函数f(x)=sin^2wx+根号3coswx*cos(π/2-wx)(w>0)且函数y=f(x)的图像相邻两条对称轴之间的距离为π\2
(1)求W的值及f(x)的单调递增区间(2)在△ABC中,a,b,c分别是角A、B、C的对边,若a=根号3,b=根号2,f(A)=3\2,求角C过程要详细些,一小时内...
(1)求W的值及f(x)的单调递增区间
(2)在△ABC中,a,b,c分别是角A、B、C的对边,若a=根号3,b=根号2,f(A)=3\2,求角C
过程要详细些,一小时内 展开
(2)在△ABC中,a,b,c分别是角A、B、C的对边,若a=根号3,b=根号2,f(A)=3\2,求角C
过程要详细些,一小时内 展开
2个回答
展开全部
(1)先化简:f(x)=sin^2wx+根号3coswx*cos(π/2-wx)=sin^2wx+根号3coswx*sinwx=(1-cos2wx)/2+根号3/2sin2wx=1/2-sinπ/6*cos2wx+sin2wx*cosπ/6=sin(2wx-π/6)+1/2
相邻两条对称轴之间的距离为π\2
T=π=2π/w w=2 单调递增区间2wx-π/6∈[-π/2+2kπ,π/2+2kπ]
(2)f(A)=3\2,sin(2wx-π/6)=1,2wx-π/6=π/2+2kπ,x=π/6+kπ/2
相邻两条对称轴之间的距离为π\2
T=π=2π/w w=2 单调递增区间2wx-π/6∈[-π/2+2kπ,π/2+2kπ]
(2)f(A)=3\2,sin(2wx-π/6)=1,2wx-π/6=π/2+2kπ,x=π/6+kπ/2
更多追问追答
追问
好像解错了咯
追答
那就改改,会了就OK了
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询