求前n个自然数的平方和公式,还要证明方法。据说现在证明方法有

求前n个自然数的平方和公式,还要证明方法。据说现在证明方法有十几种,请罗列越多越好。... 求前n个自然数的平方和公式,还要证明方法。据说现在证明方法有十几种,请罗列越多越好。 展开
 我来答
ghjfkd
2011-04-05 · TA获得超过1.2万个赞
知道大有可为答主
回答量:2364
采纳率:0%
帮助的人:1249万
展开全部
1²+2²+…+n²=n(n+1)(2n+1)/6
我只知道用数学归纳法.
证明:1)当n=1时 左边=1,右边=1(1+1)(2+1)/6=1 左边=右边∴等式成立
2)设n=k时 等式成立 即1²+2²+…+k²=k(k+1)(2k+1)/6
∴n=k+1时
1²+2²+…+k²+(k+1)²=k(k+1)(2k+1)/6+(k+1)²
=k(k+1)(2k+1)/6+6(k+1)²/6
={(k+1) [k(2k+1)+6(k+1)]}/6
=(k+1) [2k²+7k+6]/6
=(k+1)(k+2)(2k+3) /6
=(k+1)[(k+1)+1][2(k+1)+1] /6
即n=k+1时等式也成立
综合1)和2)知,等式对于所有自然数n都成立。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式