若sinα+sinβ=√2/2,求cosα+cosβ的最大值

zqs626290
2011-04-05 · TA获得超过3.1万个赞
知道大有可为答主
回答量:1.6万
采纳率:66%
帮助的人:5867万
展开全部
解:可设cosa+cosb=x,两式两边平方后相加,可得:2+2sinasinb+2cosacosb=(1/2)+x².===>(3/2)-x²=2cos(a-b)∴-2≤(3/2)-x²≤2.====>x²≤7/2.===>x≤(√14)/2.∴(cosa+cosb)max=(√14)/2.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式