急,一道高中数学题,关于解三角函数的
在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,若b²=ac(1)求∠B的取值范围(2)若t=sinB+cosB,求t的取值范围...
在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,若b²=ac
(1)求∠B的取值范围
(2)若t=sinB+cosB,求t的取值范围 展开
(1)求∠B的取值范围
(2)若t=sinB+cosB,求t的取值范围 展开
展开全部
解答:
在△ABC中,有:
A+C=180°-B,B+C=180°-A
∵a,b,c成等比数列
∴b²=ac,则c=b²/a
由正弦定理,得:
令a/sinA=b/sinB=c/sinC=k,
sinA=a/k,sinB=b/k
又∵c<a+b
∴b²/a<a+b,
可解得:0<b<(1+√5)/2a,
(sinAcotC+cosA)/(sinBcotC+cosB)
=[sinA*(cosC/sinC)+cosA]/[sinB*(cosC/sinC)+cosB]
=(sinAcosC+sinCcosA)/(sinBcosC+sinCcosB)
=sin(A+C)/sin(B+C)
=sin(180°-B)/sin(180°-A)
=sinB/sinA
=b/a
∵0<b<(1+√5)/2a,
∴0<b/a<(1+√5)/2
∴(sinAcotC+cosA)/(sinBcotC+cosB)的取值范围为(0,(1+√5)/2).
在△ABC中,有:
A+C=180°-B,B+C=180°-A
∵a,b,c成等比数列
∴b²=ac,则c=b²/a
由正弦定理,得:
令a/sinA=b/sinB=c/sinC=k,
sinA=a/k,sinB=b/k
又∵c<a+b
∴b²/a<a+b,
可解得:0<b<(1+√5)/2a,
(sinAcotC+cosA)/(sinBcotC+cosB)
=[sinA*(cosC/sinC)+cosA]/[sinB*(cosC/sinC)+cosB]
=(sinAcosC+sinCcosA)/(sinBcosC+sinCcosB)
=sin(A+C)/sin(B+C)
=sin(180°-B)/sin(180°-A)
=sinB/sinA
=b/a
∵0<b<(1+√5)/2a,
∴0<b/a<(1+√5)/2
∴(sinAcotC+cosA)/(sinBcotC+cosB)的取值范围为(0,(1+√5)/2).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询