莱布尼茨公式在高数第3章。
莱布尼兹公式,也称为乘积法则,是数学中关于两个函数的积的导数的一个计算法则。不同于牛顿-莱布尼茨公式,莱布尼茨公式用于对两个函数的乘积求取其高阶导数。
牛顿-莱布尼茨公式是微积分学中的一个重要公式,它把不定积分与定积分相联系了起来,也让定积分的运算有了一个完善、令人满意的方法。
牛顿-莱布尼茨公式的内容
是一个连续函数在区间 [ a,b ] 上的定积分等于它的任意一个原函数在区间[ a,b ]上的增量。牛顿在1666年写的《流数简论》中利用运动学描述了这一公式,1677年,莱布尼茨在一篇手稿中正式提出了这一公式。因为二者最早发现了这一公式,于是命名为牛顿-莱布尼茨公式。