已知α是实系数二次方程ax^2+bx+c=0的一个虚根,且α^3∈R,求证:a,b,c成等比数列

士妙婧RF
2011-04-05 · TA获得超过7.8万个赞
知道大有可为答主
回答量:1.5万
采纳率:42%
帮助的人:8440万
展开全部
证明:设α=m+ni,n≠0
则α^3=(m+ni)³=m³-3mn²+i(3m²n-n³)
因为α^3∈R
所以3m²n-n³=0
所以3m²=n²
α是实系数二次方程ax^2+bx+c=0的一个虚根,则b²-4ac<0
方程ax^2+bx+c=0的根为:[-b±i√(4ac-b²)]/(2a)
所以m²=(-b/2a)²=b²/(4a²),n=(4ac-b²)/(4a²)
又3m²=n²
所以3b²/(4a²)=(4ac-b²)/(4a²)
所以3b²=4ac-b²
所以4b²=4ac
所以b²=ac
所以a,b,c成等比数列
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式